陶瓷材料结构增韧.pptx
《陶瓷材料结构增韧.pptx》由会员分享,可在线阅读,更多相关《陶瓷材料结构增韧.pptx(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 近些年来,人们从天然生物的研究中达到启示,天然的生物材料,如竹、木、骨骼、贝壳等,它们虽然具有简单的组成,但是通过复杂结构的精细组合,赋予这些生物材料具有非常好的综合性能。因此,在材料的设计和研究中,引入了仿生结构设计的思想,通过“简单组成、复杂结构”的精细组合,来实现材料的高韧性、抗破坏及使用可靠性特性。陶瓷材料的仿生结构设计,从很大程度上改善了陶瓷材料的脆性本质,为陶瓷材料的强韧化提供了一条崭新的研究和设计思路。第1页/共56页1、纤维独石结构陶瓷材料 自然仿生材料的研究表明:天然竹材是典型的长纤维增强复合材料,其增强体一维管束的分布不均匀,外层致密,体内逐步变疏松。竹干的力学性能如拉伸
2、弯曲、压缩强度和模量,沿径向的分布一般是在外层高,内层低。竹材的表层的高强度和高韧性主要是由竹纤维结构的优越性所致。竹纤维的精细结构包含多层厚薄相同的层,每层中的纤维丝以不同升角分布,避免了几何和物理方面的突变,层间结合大为改善。因此,可以把自然仿生层的结构抽象为软硬相交替的多层增韧结构。第2页/共56页 1988 年,Coblenz提出了纤维独石结构(fibrous monolithic structure)。纤维状的胞体以一定的方式排布,中间间隔有很薄的界面层,结合成一个块体的结构材料。近年来提出将这种结构引入到先进陶瓷基复合材料的设计与制备中。纤维独石陶瓷由于其优异的力学性能,特别是高的
3、断裂韧性与断裂功、极高的抗热冲击破坏能力、较高的断裂强度、良好的高温抗蠕变性能、独特的三维微结构排列等优点已经引起国内外科技工作者的广泛关注和研究。第3页/共56页第4页/共56页第5页/共56页主要影响因素:(1)纤维前驱体直径(2)结构单元的强化(3)界面层的结合强度(4)纤维排布方向第6页/共56页2、仿贝壳结构特征的层状结构陶瓷材料第7页/共56页第8页/共56页第9页/共56页层状陶瓷增韧思想的提出 近年来,围绕着改善陶瓷材料韧性的问题,国内外进行了大量的研究工作,其中采用层状复合结构设计进行陶瓷增韧就是其中的方法之一。陶瓷的层状结构思想来源于大自然中贝壳等生物材料结构的启发。研究发
4、现,贝壳中珍珠层的结构与抹灰砖墙结构相似,是由一层层超薄的碳酸钙通过几十纳米厚的有机蛋白基连接在一起,如图所示,其中碳酸钙约占体积的95%,有机物只占5%,但这5%的有机物的存在却引起了碳酸钙力学性能的巨大变化。众所周知,纯粹的碳酸钙很脆,而珍珠层的强韧性却很高,其断裂韧性比碳酸钙高出3000倍以上。第10页/共56页 人们从这种结构中受到启发:要克服陶瓷材料的脆性,可以采用层状结构,在脆性的陶瓷层间加入不同材质的较软或较韧的材料层(通常称之为夹层、隔离层或界面)制成层状复合材料,这种结构的材料在应力场中是一种能量耗散结构,能克服陶瓷材料突发性断裂的致命缺点。当材料受到弯曲或冲击时,裂纹多次在
5、层界面处受到阻碍而钝化和偏折,有效地减弱了载荷下裂纹尖端的应力集中效应。同时,这种材料的强度受缺陷影响较小,是一种耐缺陷材料,这种结构可使陶瓷材料的韧性得到很大改善,为陶瓷材料的强韧化提供了一条崭新的设计和研究思路。第11页/共56页2.2 层状陶瓷的材料选择和结构设计 层状陶瓷是由层片状的陶瓷基体和夹层两部分组成。层状陶瓷的性能主要是由这两部分各自的性能和二者界面的结合状态所决定的。提高层状陶瓷韧性的关键技术包括材料基体的优化、夹层匹配的选择、结构及界面设计等。第12页/共56页材料选择 1)基体材料 层状陶瓷的基体材料一般选用具有较高强度和弹性模量的结构陶瓷材料,如SiC、Si3N4、Al
6、2O3和ZrO2等,在使用中可以承受较大的应力,并具有较好的高温力学性能。根据Clegg等人的观点,基体材料的强度直接影响复合材料的断裂韧性值,强度越高,断裂韧性越高。基体材料增韧后可以提高层状复合材料的断裂性能。基体材料常用的增韧方法有颗粒弥散增韧、纤维或晶须增韧、相变增韧等。文献表明,基体材料采用不同的增韧方法其增韧效果是不同的。因此,要发挥协同增韧作用,针对不同的基体选择不同的增韧方法。第13页/共56页2)夹层材料的选择原则 夹层材料是决定层状陶瓷韧性高低的关键。一般来说,不同的基体材料选择不同的夹层材料。选择原则如下:一 具有一定强度,尤其是高温强度,以保证常温下正常应用及高温下不发
7、生太大的蠕变;二 与基体结合强度适中,既要保证与基体不发生反应,可以很好地分隔基体材料,使材料具有宏观的层状结构,又要能够将层片状基体材料适当地“粘接”而不发生分离;三 与基体材料的热膨胀系数、弹性模量相匹配,避免热应力开裂。第14页/共56页(1)金属夹层材料 常用的金属夹层材料有Ni、Al、Cu、W、Ta等。延性金属软相材料可以发生较大程度的塑性变形来吸收能量,还能够在一定程度上使裂纹尖端钝化,并且使裂纹在弱界面发生偏转以及在裂纹尾部形成桥接等,从而起到强化和增韧效果。第15页/共56页 此外,当引入金属层后,由于金属与陶瓷热膨胀系数的差异,还会在材料烧成后的冷却过程中使陶瓷层中产生残余压
8、应力,有利于提高材料的韧性。不同的金属夹层对基体的增韧作用是不同的。例如,对于TiC基体,与别的夹层材料相比,Al和Cu增韧效果最显著。采用金属夹层时,应该采取措施降低陶瓷基体的烧结温度,以免陶瓷与金属发生高温反应,生成脆性化合物。例如,对于SiC基体材料,用金属W、Ta等作夹层材料时,Y2O3和Al2O3作为基体材料的烧结助剂,可以降低烧结温度。在金属中添加可以形成包裹层或生成稳定的金属间化合物的成分(例如在W中加入Co),也可以减弱金属与陶瓷的高温反应。第16页/共56页(2)无机非金属夹层材料 常用的无机非金属夹层材料有石墨、BN等弱结合型材料以及ZrO2,Al2O3等强结合型材料。用石
9、墨、BN等作夹层材料时,复合材料具有较高的烧结温度,材料整体的力学性能比较好。裂纹在到达弱夹层时,裂纹尖端由三向应力变为二向应力,穿层扩展受到阻碍,裂纹发生偏折而沿界面扩展,释放能量。弱夹层的加入一般会使材料的强度有所下降,但冲击韧性大幅度提高。根据目前的研究情况,采用致密弱结合型夹层具有比较好的增韧效果;采用强结合型材料时,主要是利用残余应力、材料相变等机理进行增韧。第17页/共56页(3)纤维及高分子夹层材料 此类材料有碳纤维、芳纶纤维,环氧树脂等。纤维织物与聚合物的层状复合材料是一种传统复合材料,技术和理论都比较成熟,但将其作为夹层材料应用于陶瓷增韧时间不长。纤维、高分子等软相材料作为烧
10、成后的陶瓷薄层基体材料的夹层材料具有很好的止裂能力。文献试制了Al2O3/芳纶纤维增强环氧树脂复合材料,使断裂功提高了80倍。其夹层材料参数是:Kevlar-49芳纶纤维预浸环氧树脂胶,含胶量50%,层厚。第18页/共56页2.2.2 结构设计 层状材料基体层的厚度是影响其性能的一个重要因素。较薄的单层厚度可以将裂纹在材料厚度方向分成较多的小段,有利于材料断裂功的提高。同时,还可以减小层中缺陷,以提高材料的强度;但是,基体材料的厚度并不是越薄越好。图是Al2O3/复合材料的基体层的厚度与抗弯强度和断裂韧性的关系图。由图 中可以看出,断裂韧性随着基体材料的厚度增大而减小,到一定厚度后,减小趋势变
11、缓;但是,抗弯强度随厚度的变化却与之相反。因此,对于一定的基体材料,存在一个最佳的层厚。第19页/共56页第20页/共56页 夹层材料的厚度对复合材料的性能也有显著的影响。夹层厚度若小于一定的值,韧性降低很快,随着夹层材料厚度增大,断裂韧性增加,当大于一定值后,复合材料的韧性增加得很小。如果金属夹层太厚,还会由于残余应力太大而导致陶瓷层中产生裂纹,产生负作用。图 是金属夹层的层厚度与层状复合材料抗弯强度和断裂韧性的关系图。从图 可知,对于一定的材料体系而言,夹层材料也有一个最佳的厚度。第21页/共56页第22页/共56页2.3 层状陶瓷的制备工艺 层状陶瓷复合材料是将陶瓷基片和界面层相互交替叠
12、层,经一定工艺烧结而成的。制备工艺中关键的两个环节是成型和烧结。成型工艺是形成层结构的关键,成型又分为陶瓷基体片层的成型和界面层的形成两个过程。第23页/共56页2.3.1 复合成型工艺 1)预制层片叠放成型 基体层和夹层材料均为预制片,按次序依次叠放进行压制成形。2)干粉分层敷放压制成型 基体层和夹层材料均为干粉,依次敷放在模具中进行压制成型。此种方法层间结合较好。3)基片涂覆夹层材料浆液后层压成型第24页/共56页 基体为预制片,夹层材料为料浆,涂覆后叠放压制成型。夹层材料料浆在基体层上的施加方法主要有:(1)喷涂法 将含有分散剂、悬浮剂等成分的夹层材料悬浮液喷在基体素坯薄片上再干燥,厚度
13、由喷涂次数来控制。(2)流延法 将制备好的夹层材料料浆通过底部有狭缝的料斗连续地涂敷于基体带上,调节刮刀与基带之间的间隙、料浆的粘度、浆液的压差及基体带的运动速度等参数可以控制流延厚度。流延法制备的夹层厚度均匀性比较好。第25页/共56页 (3)浸涂法 将基体素坯层在夹层材料料浆中浸渍后烘干,通过浸渍时间和次数控制夹层厚度。若夹层材料为金属,可将烧结后的陶瓷薄层叠放后,浸入熔融金属液中凝固而直接得到层状材料。第26页/共56页2.3.2 薄层成型工艺 1)流延成型 流延成型是制备陶瓷薄片最常用的一种方法。流延成型是将粉料、粘合剂及其他添加剂制成均匀的悬浮液,再均匀地涂布在连续的带子上,经过干燥
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 陶瓷材料 结构
限制150内