第02讲 二次函数综合(二)(教师版)A4-精品文档整理.docx
《第02讲 二次函数综合(二)(教师版)A4-精品文档整理.docx》由会员分享,可在线阅读,更多相关《第02讲 二次函数综合(二)(教师版)A4-精品文档整理.docx(52页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高斯教育学科教师辅导讲义学员姓名:年 级:辅导科目:学科教师:五块石1上课时间授课主题第02讲 二次函数综合(二)知识图谱错题回顾顾题回顾二次函数综合(二)知识精讲二次函数与三角形综合1二次函数与等腰三角形存在性问题:解题思路:先找后求 (1)找法:已知三角形的两个顶点,找第三个顶点,方法如下:(2)求法:分类讨论;设出点坐标,利用两腰长相等,列方程求解2二次函数与直角三角形综合二次函数与直角三角形存在性问题:解题思路:先找后求(1)找法:已知直角三角形的两个顶点,找第三个顶点,方法如下: (2)求法:分类讨论;设出点坐标,利用勾股定理,列方程求解二二次函数与四边形综合动点与平行四边形存在性问
2、题常见模型: 1两固两动型:两个固定点,两个动点构成平行四边形(1)分类讨论,分成两个固定点连线为平行四边形对边和对角线来讨论,利用对边平行且相等找出所有的存在的情况(2)设出一个动点坐标,利用中点公式法算出另外一个点的表达式,代入另一个点所在函数关系式2三固一动型:三个固定点,一个动线构成平行四边形(1)分类讨论,可以利用大三角的方法来找出所有的点大三角:连接三个固定点形成一个三角形,过每个顶点做对边的平行线,三个平行线交点即为要找的点(2)利用中点公式法,求出点坐标中点坐标公式:若,为坐标系内任意两点,则中点的坐标为中点公式法:设出点坐标,利用线段的中点都为点,即可求出点坐标总结:二次函数
3、与四边形综合问题常用的解题方法是:设出动点坐标,然后用点的坐标表示线段长度,进而建立方程求出动点坐标三点剖析一 考点:二次函数与三角形,二次函数与四边形二重难点:二次函数与三角形,二次函数与四边形三易错点:二次函数与四边形综合问题最容易出现的问题就是分类讨论不彻底导致漏解,解题时务必审清题意,按照模型分类讨论函数与动点问题题模精讲题模一:二次函数与动点问题例1.1.1已知直线y=2x+m与抛物线y=ax2+ax+b有一个公共点M(1,0),且ab()求抛物线顶点Q的坐标(用含a的代数式表示);()说明直线与抛物线有两个交点;()直线与抛物线的另一个交点记为N()若1a,求线段MN长度的取值范围
4、;()求QMN面积的最小值【答案】见解析【解析】解:()抛物线y=ax2+ax+b过点M(1,0),a+a+b=0,即b=2a,y=ax2+ax+b=ax2+ax2a=a(x+)2,抛物线顶点Q的坐标为(,);()直线y=2x+m经过点M(1,0),0=21+m,解得m=2,联立直线与抛物线解析式,消去y可得ax2+(a2)x2a+2=0(*)=(a2)24a(2a+2)=9a212a+4,由()知b=2a,且ab,a0,b0,0,方程(*)有两个不相等的实数根,直线与抛物线有两个交点;()联立直线与抛物线解析式,消去y可得ax2+(a2)x2a+2=0,即x2+(1)x2+=0,(x1)x(
5、2)=0,解得x=1或x=2,N点坐标为(2,6),(i)由勾股定理可得MN2=(2)12+(6)2=+45=20()2,1a,21,MN2随的增大而减小,当=2时,MN2有最大值245,则MN有最大值7,当=1时,MN2有最小值125,则MN有最小值5,线段MN长度的取值范围为5MN7;(ii)如图,设抛物线对称轴交直线与点E,抛物线对称轴为x=,E(,3),M(1,0),N(2,6),且a0,设QMN的面积为S,S=SQEN+SQEM=|(2)1|(3)|=,27a2+(8S54)a+24=0(*),关于a的方程(*)有实数根,=(8S54)2427240,即(8S54)2(36)2,a0
6、,S=,8S540,8S5436,即S,当S=时,由方程(*)可得a=满足题意,当a=,b=时,QMN面积的最小值为例1.1.2以菱形ABCD的对角线交点O为坐标原点,AC所在的直线为x轴,已知A(4,0),B(0,2),M(0,4),P为折线BCD上一动点,作PEy轴于点E,设点P的纵坐标为a(1)求BC边所在直线的解析式;(2)设y=MP2+OP2,求y关于a的函数关系式;(3)当OPM为直角三角形时,求点P的坐标【答案】见解析【解析】解:(1)A(4,0),B(0,2),OA=4,OB=2,四边形ABCD是菱形,OC=OA=4,OD=OB=2,C(4,0),D(0,2),设直线BC的解析
7、式为y=kx2,4k2=0,k=,直线BC的解析式为y=x2;(2)由(1)知,C(4,0),D(0,2),直线CD的解析式为y=x+2,由(1)知,直线BC的解析式为y=x2,当点P在边BC上时,设P(2a+4,a)(2a0),M(0,4),y=MP2+OP2=(2a+4)2+(a4)2+(2a+4)2+a2=2(2a+4)2+(a4)2+a2=10a2+24a+48当点P在边CD上时,点P的纵坐标为a,P(42a,a)(0a2),M(0,4),y=MP2+OP2=(42a)2+(a4)2+(42a)2+a2=10a240a+48,(3)当点P在边BC上时,即:0a2,由(2)知,P(2a+
8、4,a),M(0,4),OP2=(2a+4)2+a2=5a2+16a+16,PM2=(2a+4)2+(a4)2=5a28a+32,OM2=16,POM是直角三角形,易知,PM最大,OP2+OM2=PM2,5a2+16a+16+16=5a28a+32,a=0(舍)当点P在边CD上时,即:0a2时,由(2)知,P(42a,a),M(0,4),OP2=(42a)2+a2=5a216a+16,PM2=(42a)2+(a4)2=5a224a+32,OM2=16,POM是直角三角形,、当POM=90时,OP2+OM2=PM2,5a216a+16+16=5a224a+32,a=0,P(4,0),、当MPO=
9、90时,OP2+PM2=5a216a+16+5a224a+32=10a240a+48=OM2=16,a=2+(舍)或a=2,P(,2),即:当OPM为直角三角形时,点P的坐标为(,2),(4,0)例1.1.3如图所示,在平面直角坐标系中xOy中,抛物线y=ax22ax3a(a0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC(1)求A、B两点的坐标及抛物线的对称轴;(2)求直线l的函数表达式(其中k、b用含a的式子表示);(3)点E是直线l上方的抛物线上的动点,若ACE的面积的最大值为,求a的值;(4)设P
10、是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由【答案】见解析【解析】解:(1)当y=0时,ax22ax3a=0,解得:x1=1,x2=3,A(1,0),B(3,0),对称轴为直线x=1;(2)直线l:y=kx+b过A(1,0),0=k+b,即k=b,直线l:y=kx+k,抛物线与直线l交于点A,D,ax22ax3a=kx+k,即ax2(2a+k)x3ak=0,CD=4AC,点D的横坐标为4,3=14,k=a,直线l的函数表达式为y=ax+a;(3)过E作EFy轴交直线l于F,设E(x,ax22ax3a),则F(x,
11、ax+a),EF=ax22ax3aaxa=ax23ax4a,SACE=SAFESCEF=(ax23ax4a)(x+1)(ax23ax4a)x=(ax23ax4a)=a(x)2a,ACE的面积的最大值=a,ACE的面积的最大值为,a=,解得a=;(4)以点A、D、P、Q为顶点的四边形能成为矩形,令ax22ax3a=ax+a,即ax23ax4a=0,解得:x1=1,x2=4,D(4,5a),抛物线的对称轴为直线x=1,设P(1,m),若AD是矩形ADPQ的一条边,则易得Q(4,21a),m=21a+5a=26a,则P(1,26a),四边形ADPQ是矩形,ADP=90,AD2+PD2=AP2,52+
12、(5a)2+32+(265a)2=22+(26a)2,即a2=,a0,a=,P(1,);若AD是矩形APDQ的对角线,则易得Q(2,3a),m=5a(3a)=8a,则P(1,8a),四边形APDQ是矩形,APD=90,AP2+PD2=AD2,(11)2+(8a)2+(14)+(8a5a)2=52+(5a)2,即a2=,a0,a=,P(1,4),综上所述,点A、D、P、Q为顶点的四边形能成为矩形,点P(1,)或(1,4)例1.1.4如图,已知抛物线y=ax22ax9a与坐标轴交于A,B,C三点,其中C(0,3),BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于
13、点M,N(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,均为定值,并求出该定值【答案】见解析【解析】解:(1)C(0,3)9a=3,解得:a=令y=0得:ax22 x9a=0,a0,x22 x9=0,解得:x=或x=3点A的坐标为(,0),B(3,0)抛物线的对称轴为x=(2)OA=,OC=3,tanCAO=,CAO=60AE为BAC的平分线,DAO=30DO=AO=1点D的坐标为(0,1)设点P的坐标为(,a)依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a
14、1)2当AD=PA时,4=12+a2,方程无解当AD=DP时,4=3+(a1)2,解得a=0或a=2(舍去),点P的坐标为(,0)当AP=DP时,12+a2=3+(a1)2,解得a=4点P的坐标为(,4)综上所述,点P的坐标为(,0)或(,4)(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:m+3=0,解得:m=,直线AC的解析式为y=x+3设直线MN的解析式为y=kx+1把y=0代入y=kx+1得:kx+1=0,解得:x=,点N的坐标为(,0)AN=+=将y=x+3与y=kx+1联立解得:x=点M的横坐标为过点M作MGx轴,垂足为G则AG=+MAG=60,AGM=90,AM=2A
15、G=+2=例1.1.5抛物线y=x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使APB=ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较OCQ与OCA的大小,并说明理由【答案】见解析【解析】解:(1)在y=x2+2x+3中,令y=0可得0=x2+2x+3,解得x=1或x=3,令x=0可得y=3,B(3,0),C(0,3),可设直线BC的解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=1,直线BC解析式为y=x+3;(2)OB=OC,ABC=45,y=x2+2x+3=(x1)2+4
16、,抛物线对称轴为x=1,设抛物线对称轴交直线BC于点D,交x轴于点E,当点P在x轴上方时,如图1,APB=ABC=45,且PA=PB,PBA=67.5,DPB=APB=22.5,PBD=67.545=22.5,DPB=DBP,DP=DB,在RtBDE中,BE=DE=2,由勾股定理可求得BD=2,PE=2+2,P(1,2+2);当点P在x轴下方时,由对称性可知P点坐标为(1,22;综上可知P点坐标为(1,2+2)或(1,22);(3)设Q(x,x2+2x+3),当点Q在x轴下方时,如图2,过Q作QFy轴于点F,当OCA=OCQ时,则QECAOC,即,解得x=0(舍去)或x=5,当Q点横坐标为5时
17、,OCA=OCQ;当Q点横坐标大于5时,则OCQ逐渐变小,故OCAOCQ;当Q点横坐标小于5且大于0时,则OCQ逐渐变大,故OCAOCQ例1.1.6抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0)(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PMy轴,分别与x轴和直线CD交于点M、N连结PC、PD,如图1,在点P运动过程中,PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;连结PB,过点C作CQPM,垂足为点Q,如图2,是否存在点P,使得CNQ与PBM相似?若存在,求出满足条件的点P
18、的坐标;若不存在,说明理由【答案】见解析【解析】解:(1)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),解得,该抛物线对应的函数解析式为y=x2x+3;(2)点P是抛物线上的动点且位于x轴下方,可设P(t,t2t+3)(1t5),直线PMy轴,分别与x轴和直线CD交于点M、N,M(t,0),N(t,t+3),PN=t+3(t2t+3)=(t)2+联立直线CD与抛物线解析式可得,解得或,C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7t,SPCD=SPCN+SPDN=PNCE+PNDF=PN= (t)2+=(t)2+,当t=时
19、,PCD的面积有最大值,最大值为;存在CQN=PMB=90,当CNQ与PBM相似时,有或两种情况,CQPM,垂足为Q,Q(t,3),且C(0,3),N(t,t+3),CQ=t,NQ=t+33=t,P(t,t2t+3),M(t,0),B(5,0),BM=5t,PM=0(t2t+3)=t2+t3,当时,则PM=BM,即t2+t3=(5t),解得t=2或t=5(舍去),此时P(2,);当时,则BM=PM,即5t=(t2+t3),解得t=或t=5(舍去),此时P(,);综上可知存在满足条件的点P,其坐标为(2,)或(,)随堂练习随练1.1在平面直角坐标系xOy中,抛物线y=x24x+3与x轴交于点A、
20、B(点A在点B的左侧),与y轴交于点C(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),若x1x2x3,结合函数的图象,求x1+x2+x3的取值范围【答案】见解析【解析】解:(1)由y=x24x+3得到:y=(x3)(x1),C(0,3)所以A(1,0),B(3,0),设直线BC的表达式为:y=kx+b(k0),则,解得,所以直线BC的表达式为y=x+3;(2)由y=x24x+3得到:y=(x2)21,所以抛物线y=x24x+3的对称轴是x=2,顶点坐标是(2,1)y1=y2,x1+x2=4令y=1,y=x+3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第02讲 二次函数综合二教师版A4-精品文档整理 02 二次 函数 综合 教师版 A4 精品 文档 整理 资料
限制150内