数学教师的三项基本功精.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《数学教师的三项基本功精.ppt》由会员分享,可在线阅读,更多相关《数学教师的三项基本功精.ppt(122页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学教师的三项基本功第1页,本讲稿共122页引入:一个长期的思考数学教师是否应当具有自己特殊的基本功?数学教师的三项基本功:(1)善于善于举例;(2)善于善于提问;(3)善于善于比较与优化。第2页,本讲稿共122页一个普遍性的建议 面对任一新的主张或时髦潮流,我们都应冷静地思考:什么是这一主张或口号的主要内涵?这一主张或口号能为我们提供什么新的启示和教益,特别是,具有怎样的现实意义?什么是其固有的局限性或可能的消极后果?第3页,本讲稿共122页相应的基本认识“三项基本功”集中反映了数学与数学教学(教育)的特殊性。“三项基本功”不应被理解成单纯的技能;恰恰相反,就只有联系深层次的教学思想和教育思
2、想进行分析思考我们才能真正理解它们的内涵和意义。第4页,本讲稿共122页一、一、“善于举例善于举例”与数学教学与数学教学从“什么是数学”谈起?一个基本论点:“数学:模式的科学”(mathematics:the science of patterns)数学所反映的并不是某一特定事物或现象的量性特征,而是一类事物或现象在量的方面的共同性质。第5页,本讲稿共122页进一步的分析数学基本特性:抽象性。“善于举例”的两个具体涵义:(1)如何能为抽象的数学概念举出适当的实例?(2)如何能够帮助学生由具体实例抽象出相应的数学概念?第6页,本讲稿共122页学习心理学研究的相关结论“概念定义”与“概念意象”的必
3、要区分。概念意象的多元性:它“由所有的相关实例、反例、事实和关系组成。”(维纳与赫什科威兹,1980)第7页,本讲稿共122页(1)什么是“适当的例子”?标准之一:相对于学生的可接受性;标准之二:典型性,也即能为相应的数学抽象提供必要的基础。这方面的一个基本事实:举例并非一件易事。第8页,本讲稿共122页例“范例教学法”(R.Davis)为了帮助学生掌握负数的概念,特别是有理数的运算(如4-10=?),教师采用了一个装有豆子的口袋,再在桌上摆上一些豆子。教师先在口袋中装入4 棵豆子,同时在黑板上记下“4”这样一个数字;然后,教师从口袋中拿出10棵豆子,这时黑板上就出现了“4-10”这样一个计算
4、式。教师接着提问道:(1)现在口袋里的豆子与一开始相比是变多了还是变少了?(2)少了多少?第9页,本讲稿共122页相关的分析豆子、口袋以及相关的动作对于学生来说显然都是十分熟悉的。一个好的“认知基础”应当具有这样的性质:它能“自动地”指明相关概念的基本性质或相关的运算法则。这也就是指,借助于所说的实例学生可以顺利地作出相应的发现。例如,学生在此显然就可借助所说实例顺利地实行 4-10、5 8等运算,而无须依赖于对相应法则的机械记忆。第10页,本讲稿共122页(2)如何帮助学生由实例抽象出相应的数学概念?这方面的关键之一:去情境;更为深入的分析:数学抽象的建构性质;相关的理论:“变式理论”(“概
5、念变式”)。核心思想:如何通过适当的变化帮助学生掌握相关概念的本质。第11页,本讲稿共122页例1 正方形的认识教师:“什么是正方形?”学生:“方方正正就是正方形。”教师:“什么是方方正正?”学生:“就是四边相等。”教师在黑板上画出菱形,问:“这个图形是否是正方形?”学生:“不是,因为它不正。”第12页,本讲稿共122页教师又在黑板上画一个矩形,问:“这是否正方形?”学生:“不是!因为这个图形不方。”这样诸多回答,教师将学生回答得正确的结论都写在黑板上,回答不正确的不写,最后加以补充总结,抽象出正方形的定义。写在黑板上。第13页,本讲稿共122页“概念变式”的主要内容:(1)“标准变式”与“非
6、标准变式”:我们在教学中不应局限于平时经常用到的一些实例,而应有意识地引入一些“非标准变式”,从而就可防止学生将相关实例的一些非本质特性误认为概念的本质特性。第14页,本讲稿共122页(2)“概念变式”与“非概念变式”:“非概念变式”大致地就相当于“反例”,这也就是指,除去“正例”以外,我们在教学中还应给出若干“反例”,这样,通过两者的对照就可帮助学生更好地掌握概念的本质。第15页,本讲稿共122页例2“认识分数”引入:“分蛋糕”。教师并通过简短讨论引出了这样一个结论:“将一个蛋糕平均分成两份,每份是它的1/2。问题:如何以“变式理论”(概念变式)为指导去设计教学从而帮助学生较好掌握分数的本质
7、?第16页,本讲稿共122页(1)分割的对象显然未必一定要是蛋糕,而也可以是纸片或别的什么东西;另外,对于所分割对象的外形也不应作任何限制:它们既可以是圆形,也可以是方形或任何其它形状。(2)对分割方法也可作出一定变化,如就长方形纸片的分割而言,可以横着折,也可以竖着折,还可钭着折;另外,除去各个“正例”以外,我们显然也应引入一定的“反例”,如按照中位线分割的梯形等 第17页,本讲稿共122页(3)作为进一步的抽象,我们显然又应由1/2逐步扩展到1/3,1/4,乃至2/3,3/4,。从而,如果仍然集中于“将一个蛋糕平均分成两份,每份是它的1/2”这一论述,我们就可以说,除去分割的对象与方法以外
8、,我们也应对“平均分成两份”中的“两份”以及所说的“每份”作出适当变化。第18页,本讲稿共122页(4)这事实上也可被看成“非标准变式”的一个实例,即分配的对象也可以是2个蛋糕、3个蛋糕,而未必一定要是1个蛋糕容易看出,这一变化事实上也就意味着我们已经将分析的着眼点由“(平均)分配”这一实际活动转移到了部分与整体之间的关系,后者并就意味着对于分数本质更为深入的认识。第19页,本讲稿共122页新的重要发展:由“变式理论”到“多元表征理论”传统的研究:主要集中于如何能够通过适当的举例帮助学生较好掌握概念的本质(单一表征)。新的认识:更加强调概念内在表征(概念意象)的多元性,以及各方面的必要互补与思
9、维的灵活性第20页,本讲稿共122页回顾:心理学研究的相关结论“概念定义”与“概念意象”的必要区分。概念意象的多元性:它“由所有的相关实例、反例、事实和关系组成。”(维纳与赫什科威兹,1980)第21页,本讲稿共122页一些相关的提法布鲁纳(1964)的三种意象形式:动作的、图像的,和符号的;Lesh&Laudan(1983)的“五个维度”:实物操作,图像,日常语言,符号语言、现实情景。第22页,本讲稿共122页第23页,本讲稿共122页从教学的角度看更为一般的思考:如何处理好形式与非形式之间的关系?我们既应高度重视由实例向严格定义的必要过渡,同时又应适当地“淡化形式”,并应高度重视认识活动的
10、复杂性(多元性)与整合性。第24页,本讲稿共122页一些具体的教学建议(1)视觉形象与符号表征的必要互补:当前应当加强的环节:“教师用手势说明自己的表征;或者教师使用空间表征,比如代数学习中的箭头说明自己的表征;教师并有意识地促使学生建构和运用表征;教师要求学生以手臂、手指或身体移动等展现表征的肌体运动;”(普雷斯梅杰,2006)第25页,本讲稿共122页(2)日常语言与数学语言的必日常语言与数学语言的必要互补要互补教师在教学中不应停留于严格的数学语言,而应注意使用日常语言对相关内容作出必要的解释。这事实上也就是比喻与类比何以在数学教学中同样具有广泛应用的重要原因,教师并应要求学生用自己的语言
11、说出对数学概念的理解,甚至是感受。关键:我们既应对学生的非正规解释持接受与理解的态度,同时又应注意维护数学的正式意义。第26页,本讲稿共122页(3)操作性认识与结构性认识的必要互补当前应当加强的环节:活动的内化;由操作性认识向结构性认识的必要过渡。相关的论述:“对概念教学,课改以后更为强调概念的生成,这是正确的。但不能忽视对概念本身的分析,这可是基本功。”(陈永明,2008)第27页,本讲稿共122页更为一般的分析概念教学的不同环节:生成、分析与组织。陈永明:“为了理解一个概念,一般说,一是正反举例;二是扣住定义的关键词语;三是注意特殊情况;四是与有关概念进行比较,找出概念的区别和联系。”第
12、28页,本讲稿共122页相关的理论从“变式理论”到“变异理论”(植佩敏、马飞龙,“如何促进学生学习变易理论与中国式教学”,人民教育,2009年第8期)注意概念的不同定义;转变概念的表征形式(图形变式与语言变式);认识概念的多元性质,分析概念与其它概念之间的联系(包括相同点与不同点)第29页,本讲稿共122页转向“问题解决”数学活动的两个基本形式:(1)概念的生成、分析与组织;(2)问题解决的提出与解决。第30页,本讲稿共122页相关的论述“要求学习者解决问题时,必须通过提供相关案例向学习者提供他们不具备的经验通过在学习环境中展示相关案例,向学习者提供了一系列的经验和他们可能已经建构的与这些经验
13、有关的知识,以便与当前的问题进行对比”(乔纳森)第31页,本讲稿共122页进一步的分析“例题”在数学教学中的应用;两种不同的数学传统:(1)不同的典范:古希腊的几何原本与中国的九章算术。(2)不同的范式:“公理演绎”与“问题算法”。第32页,本讲稿共122页相关的经验李成良(2010):“我提倡一题一课,一课多题一节数学课做一道题目,以一道题为例子讲解、变化、延伸、拓展,通过师生互动、探讨、尝试、修正,最后真正学到的是很多题的知识。”第33页,本讲稿共122页案例两则我们应当如何去看待所谓的“植树问题”,特别是,它发挥的究竟是一个案例的作用、还是规律的具体体现?“找次品问题”与特殊化方法。第3
14、4页,本讲稿共122页相关的论述梅森(1982):由随意的特殊化去了解问题;由系统的特殊化为一般化提供基础;由巧妙的特殊化对一般性结论进行检验。第35页,本讲稿共122页参考材料1 郑毓信,“植树问题教学之我见”,小学数学(人教版),2008年第4期2 郑毓信,“找次品问题与数学思维”,小学教学,2011年第7期 第36页,本讲稿共122页一些相关的提法“变式理论”中的“过程变式”。“双基教学”的必要发展:基本技能,不应求全,而应求变;基础知识,不应求全,而应求联。第37页,本讲稿共122页二、“善于提问善于提问”与数学教学与数学教学1.“问题”对于数学教学的特殊重要性。(1)从”双中心的教学
15、”谈起。中国数学教学的一项优秀传统:“教师试图获得一种平衡,教学也就变得既以学生为中心又以教师为中心。”(马飞龙,“什么是好的教学?”,人民教育,2009年第8期)第38页,本讲稿共122页国际上的相关研究“那些自诩为绝对真理的建议,无论认为教学应当完全以学生为中心,还是认为教学应当完全由教师主导,都得不到研究的支持,因此不应当遵循。采取何种教学方法应当根据具体情况来决定。”(美国数学咨询委员会最终报告)第39页,本讲稿共122页进一步的思考在教学中如何才能真正做到既尊重学生在学习活动中的主体作用,同时又能充分发挥教师的主导作用?第40页,本讲稿共122页问题的重要性(1)“河南省濮阳市第四中
16、学教学改革纪实”(人民教育,2009年第6期):“老师和学生都应以问题为中心进行双向的互动,实现双主体的双互动。”实现“双主体”的关键:问题引领。第41页,本讲稿共122页教材中的相应做法“由情境串引出问题串。选取密切联系学生生活、生动有趣的素材,构成情境串,引发出一系列的问题,形成问题串,将整个单元的内容串联在一些。”(山东版)“新数学读本主要是通过知识问题化和问题知识化的设置,促使学生完成对数学知识、数学思维、方法的主动建构。”(杭州版)第42页,本讲稿共122页问题的重要性(2)“问题”对于数学的特殊重要性:(1)“问题”在很大程度上可以被看成数学研究活动的实际出发点。数学发展的基本模式
17、:问题问题解决新的研究问题。(2)每个数学分支都有自己的基本问题,相应的理论也是围绕这些问题得到建立的。第43页,本讲稿共122页问题的重要性(3):聚焦数学教学一个特殊的研究视角:语文教学反照下的数学教学。语文教学的一个有效手段:通过朗读创设出好的学习情境,也即要求学生“带着感带着感情去读,读出感情来!情去读,读出感情来!”什么是数学教学中调动学生好奇心、上进心的有效手段?第44页,本讲稿共122页 数学教学的一个有效手段教师在教学中应当善于提出既有一定挑战性、同时又与学生的认知水平相适应的问题,从而就能很好调动学生的好奇心,促使他们积极地去进行学习,深入地去进行思考。第45页,本讲稿共12
18、2页东西方数学教学思想的比较(张奠宙)(1)“情境设计”与中国的启发性“导入”;中国的数学课堂中有许多独特的导入方式,除了现实“情境呈现”之外,还包括“假想模似”、“悬念设置”、“故事陈述”、“旧课复习”、“提问诱导”、“习题评点”、“铺垫搭桥”、“比较剖析”等手段。第46页,本讲稿共122页相关的结论从学生的日常生活情境出发进行数学教学,只能是启发性“导入”的一种加强和补充,不能取消或代替“导入”教学环节的设置。“导入的价值和实行的办法是要思考的问题”(2012)第47页,本讲稿共122页例1 “异分母分数加减法”的教学(吴正宪)教师出示了这样3道题:1/4+7/12=?1/4+5/6=?1
19、/4 1/7=?请同学们试做。学生做完订正后,老师又提了这样几个问题:问题1:3道题同学们都把异分母转化为同分母分数,转化时要注意什么?问题2:转化的目的是什么?问题3:通过计算,你认为异分母分数加减法的计算方法是什么?问题4:在计算时要注意什么问题?第48页,本讲稿共122页例2 “百分数的意义”的教学(黄爱华)教学中教师首先要求学生自由地提出各种与百分数直接相关的问题;但与“放任自流”不同,教师通过对学生所提出的问题进行梳理归纳出了以下几个题:问题1:百分数有什么好处?问题2:什么是百分数的意义?问题3:在什么情况下用百分数?问题4:百分数与分数比较有什么不同?第49页,本讲稿共122页聚
20、焦数学教学之二:努力提高课堂提问的水准课堂提问的重要性:很好处理教学的“预设性”与“生成性”的关键所在,特别是,如何能够围绕核心问题去进行教学,特别是,使之真正成为学生自己的问题;同时又能依据学生的情况作出必要的调整?第50页,本讲稿共122页中国数学教学的又一特色背景:“大班教学”的现实。现实中的问题:问题多而不精。方向:努力增强问题的“启发性”。第51页,本讲稿共122页“启发性”的基本涵义既有一定的启示意义,即是有利于促进学生的发展;但又非对于学生的硬性规范,而是具有一定的开放性或自由度,也即能给学生的独立思考留下充分的空间。第52页,本讲稿共122页例 韦达定理的教学两种不同的提问方式
21、和教学设计:(1)先列表让学生填充,然后问:你认为根与系数有什么关系?(2)直接问:什么是一元二次方程的主要成分?在一元二次方程的根与系数可能存在什么样的关系?如何去作出发现?又应如何去证明?第53页,本讲稿共122页例 韦达定理的教学 方程 X1X2X1+X2X1 X2X2X-12=0X2 6X+5=0X2 2X-35=0第54页,本讲稿共122页2.转向教学“教师的工作是通过向学生问他们应当自己问自己的问题来对学习和问题解决进行指导。这是参与性的,不是指示性的;其基础不是要寻找正确答案,而是针对专业的问题解决者当时会向自己提出的那些问题。”(巴拉布与达菲)第55页,本讲稿共122页一些相关
22、的提法像数学家那样去提出问题、分析问题、解决问题;“帮助学生学会数学地思维”。第56页,本讲稿共122页什么是一堂好的数学课?超越知识达到更高的水平。数学教学所应发挥的重要作用:给人以智慧!智性教学。第57页,本讲稿共122页插入:教师的三个境界仅仅停留于知识的层面:教师匠;能够体现数学的思维:智者;无形的文化熏陶:大师!第58页,本讲稿共122页聚焦“问题解决”(1)波利亚的贡献:波利亚:“问题解决”现代研究的主要奠基者。代表性著作:怎样解题;数学的发现;数学与猜想。主要工作:“数学启发法”(解题策略)的研究实质:“一些定型的问题和建议”。第59页,本讲稿共122页解题过程的四个步骤:(1)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学教师 基本功
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内