数学美国数学建模写作培训.pptx
《数学美国数学建模写作培训.pptx》由会员分享,可在线阅读,更多相关《数学美国数学建模写作培训.pptx(147页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Tailortheshapetooptimizeotherpossiblerequirements,suchasmaximumtwistintheair.Whattradeoffsmayberequiredtodevelopa“practical”course?第1页/共147页三个任务:1、确定滑道的形状,使腾空的垂直距离最大;2、调整滑道形状,使其它的参数,如空中扭转幅度,得到优化;3、设计一个实用的滑道会有哪些损失。第2页/共147页首先,思考一下运动员表演的精彩程度和哪些因素有关?1、滑道的形状,2、滑道的坡度3、运动员所选的滑行线路4、运动员本身的身体素质和滑行技术第3页/共147页
2、1、Shape of Course:It is usually accepted that the half-pipe is 100 to 150 meters long,17 to 19.5 meters wide and has a height of 5.4 to 6.5 meters(from floor to crown).The slope angle is 16 to 18.5 degrees.第4页/共147页In addition,the Federation International de Ski(FIS)recommended that the Width(W),Hei
3、ght(H),Transition(T)and the Bottom Flat(B)could be 15m,3.5m,5m,5m,respectively(as Shown in Figure1).第5页/共147页第6页/共147页 2、滑道的倾斜程度可以用滑道底部平面与水平线交角 表示 3、运动员滑行的路线是由滑道边缘某点从高处到低处滑向另一边缘某点,然后起跳到同侧边缘一点再进行下一轮滑行。第7页/共147页 滑行线路可以看成空间一条曲线,坐标用(x,y,z)表示。z轴平行于滑道的方向;y轴垂直于滑道;x轴、y轴、z轴构成右手直角坐标系。4、运动员的技术体现在对滑行路线的掌控和跳跃前体位
4、的转变获得的能量的大小两个方面第8页/共147页Figure 2 shows the definition of the coordinate variables x,y,z.x is the free variable,while y and z are functions of x.is dependent on the shape of the half-pipe.is dependent on the path of the snowboarder第9页/共147页第10页/共147页 The shape of the half-pipe can be represented by t
5、he function The path player chooses can be represented by the function z=z(x).The geometric meanings of are follows第11页/共147页第12页/共147页第13页/共147页第14页/共147页In a simply condition with constant friction,the energy loss will be minimizedif z is proportional to ,the length of the projection curvature of
6、the three dimensional curve to the x-z plane.(Figure 4)第15页/共147页第16页/共147页 Thus,we define the coordinate along z-axis as .Practically,we control z(x)using thelocation of the point right before the fly.第17页/共147页第18页/共147页第19页/共147页第20页/共147页第21页/共147页第22页/共147页 “A cycle”can be divided into two part
7、s.The first part is the movement on the half-pipe,and the second part is the air bourn performance.第23页/共147页第24页/共147页Flying distance():thedisplacementalongzdirectionduringtheflyFlying time():thedurationoftheflyCycle distance(Sc):thedisplacementalongzdirectionduringacycle第25页/共147页Procedures:A:find
8、 the relationships of main variables such as the energy loss resulted by friction,the velocity before flying,the duration of flying,flying height,the distance alone z-axis in each performance,etc.第26页/共147页 B:determine the shape of the course by fixing the width,height,thelength of bottom flat,the v
9、ert height,theshape of the transition.The objective is the maximum vertical height.第27页/共147页 C:analyze the factors affecting twist performance,particularly,the angularmomentum at the moment before flying.D:discuss the trade-off when developa practical course 第28页/共147页Analysis of the forces There a
10、re three kinds of force acted on the snowboarder,which are gravity mg,normal force N and resistance f.Resistance includes air drag and the friction between the snow and snow-board.第29页/共147页 N balances with the gravitys and the pseudo force centrifugal forces projection in the normal direction of th
11、e half-pipe surface at this point.The friction of the snow is propor-tional to the normal force,while hasnothing to do with velocity.第30页/共147页 It required that the angle between the direction of the snowboard and that of snowboarders velocity is constant,and the coefficient is.Air drag is proportio
12、nal to the square of the velocity,and the coefficient is.第31页/共147页第32页/共147页第33页/共147页A:vertical air without considering the rotation第34页/共147页 在管内滑行的第一阶段,运动员以一定的初始能量跳入滑道,并保持身体始终垂直于立足点的切平面方向,由于阻力作用,损失一定能量后到达管道另一端,此时运动员改变姿势成与水平垂直位置,进入第二阶段 起跳,完成空中直体旋转或翻转之后落到管壁边缘,从而完成一个动作循环.两个过程就是能量转换的过程.从三个方面分析这个过程.第
13、35页/共147页第36页/共147页 以管道最高处U形横截面对称中心为原点O,过O点的水平线为零势能点,运动员在任意一点(x,y,z)的势能为管道宽度的一半长度为 。Step1 calculation of第37页/共147页第38页/共147页第39页/共147页第40页/共147页第41页/共147页第42页/共147页第43页/共147页第44页/共147页The work done by the snowboarder is第45页/共147页Step 3.The calculation of“vertical air”At the edge of the half-pipe bef
14、ore thefly,is 0.Consider the potential energy at the start point as 0,From the Energy Conservation Principle,we have 第46页/共147页Since第47页/共147页a.If we neglect the air drag during the fly The flying track from the start point toend point is that in figure.第48页/共147页第49页/共147页From the second Newton law
15、 in the y-axis,第50页/共147页第51页/共147页第52页/共147页b.If we take the air drag during the flyinto account The air drag is with the same direction as the tangent line The component force on the y-axis is 第53页/共147页According to the Second Newton Law:=Let Sincethen 第54页/共147页Separating the variables yieldssoTh
16、us 第55页/共147页Similarly,from the second Newtonlaw in z-axis,obtain flying distanceThe decrease of gravitational potential is第56页/共147页Fromand 第57页/共147页The energy conversion and conser-vation relationship at the beginning and the end of“a cycle”is 第58页/共147页B:Discussing the Rotation “Vertical air”is
17、not the only judgingcriteria of a snowboarders performance.The total degree of rotation and the levelof difficulty are also essential.第59页/共147页Analyzing the problem As soon as the snowboarder flies into the air,if we neglect the air drag,hisangular momentum cannot be changed,so his rotation only de
18、pends on thesnowboarder himself.第60页/共147页 By changing his own posture,thesnowboarder can do twist,flip or whatever he wants.Thus,since we are discussing the influence of the shape of the half-pipe,we only need to considerthe initial angular momentum of the fly.To maximize the twist,we have to maxim
19、ize the initial angular momentum.第61页/共147页 The angular momentum can bedisintegrated into three directions-x,y,and z.Lets represent them with Lx0,Ly0,and Lz0.The shape of the half-pipe canonly affect Lz0 while Lx0 and Ly0 are determined by the snowboarder,with thehelp of the friction of the snow.第62
20、页/共147页第63页/共147页 From the definition of angularmomentum,we have(Regard the snowboarder as a stick.is the angular velocity about the axispassing through and perpendicular to oneend of the stick.m is the mass of the snowboarder;is the height of snowboarder)第64页/共147页 is the radius of curvature of the
21、 cross-section of the half-pipe at the edge and the part of the curve that close to the edge.Plusthen 第65页/共147页 From equation above we can see that the snowboarder should stretch his body as much as possible to increase .And to maximize should be as small as possible and should be as large as possi
22、ble.Here we still use numerical method to find the optimal half-pipeshape.第66页/共147页 When the angular momentum is alongx and y direction.This kind of twist isbeginners level and doesnt have muchto do with the shape of the half-pipe.Instead,it depends on the snowboardersmovement right before the fly.
23、第67页/共147页C:Numerical Computation Firstly,determine the values of some parameters,such as :friction coefficient between the snow and snowboard,:the drag coefficient of air,m:themass of the snowboarder,:the initial mechanical energy at thebeginning of a cycle.第68页/共147页 According to H.Yan,P.Liu,and F
24、.Guo8,the coefficient of kinetic friction between snow and snowboard is generally about 0.03 to 0.2.In addition,J.Chen,R.Li and Z.Guan 9 discoveredthe friction coefficient to be 0.0312.Thus,we generally assume to be 0.03 in our discussion about shape of half-pipe.=0.03第69页/共147页 As N.Yan stated in r
25、eference 10,theair drag coefficient is about 0.15.=0.15 Assume the mass of a snowboarder is typically 60kg which is the mass of Shaun White,one of the most outstand-ing snowboarders in the world.m=60kg第70页/共147页According to reference 11,the drop-in ramp height should be at least 5.5mand distance fro
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 美国 建模 写作 培训
限制150内