数据结构与算法概要.pptx
《数据结构与算法概要.pptx》由会员分享,可在线阅读,更多相关《数据结构与算法概要.pptx(113页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 学习要点:理解递归的概念。掌握设计有效算法的分治策略。通过下面的范例学习分治策略设计技巧。(1)二分搜索技术;(2)大整数乘法;(3)Strassen矩阵乘法;(4)棋盘覆盖;(5)合并排序和快速排序;(6)线性时间选择;(7)最接近点对问题;(8)循环赛日程表。第1页/共113页将要求解的较大规模的问题分割成k个更小规模的子问题。算法总体思想算法总体思想算法总体思想算法总体思想nT(n/2)T(n/2)T(n/2)T(n/2)T(n/2)T(n/2)T(n/2)T(n/2)T(n)=n对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模
2、足够小,很容易求出其解为止。第2页/共113页算法总体思想n对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。nT(n)=n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4
3、)T(n/4)n将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。第3页/共113页算法总体思想n将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。nT(n)=n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)
4、T(n/4)T(n/4)T(n/4)第4页/共113页算法总体思想n将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。nT(n)=n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)n/2T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)T(n/4)分治法的设计思想是,将一个难
5、以直接解决的大问题,分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分割成一些规模较小的相同问题,以便各个击破,分而治之。分而治之。第5页/共113页2.1 2.1 递归的概念递归的概念递归的概念递归的概念直接或间接地调用自身的算法称为递归算法递归算法。用函数自身给出定义的函数称为递归函数递归函数。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用
6、在算法设计之中,并由此产生许多高效算法。第6页/共113页2.1 2.1 递归的概念递归的概念递归的概念递归的概念例例1 1 阶乘函数阶乘函数 非递归定义:非递归定义:n n!=n*(n-1)*(n-2)*1=n*(n-1)*(n-2)*1 阶乘函数可递归地定义为:边界条件递归方程边界条件与递归方程是递归函数的二个要素,递归函数只有具备了这两个要素,才能在有限次计算后得出结果。第7页/共113页n递归算法:int recur(int n)if(n=1)return 1;return n*recur(n-1);递归出口递归调用第8页/共113页小兔子问题一般而言,兔子在出生两个月后,就有繁殖能力
7、,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?经过月数:-1-2-3-4-5-6-7-8-9-10-11-12兔子对数:-1-1-2-3-5-8-13-21-34-55-89-144第9页/共113页2.1 递归的概念例例2 Fibonacci2 Fibonacci数列数列无穷数列1,1,2,3,5,8,13,21,34,55,称为Fibonacci数列。它可以递归地定义为:边界条件递归方程第n个Fibonacci数可递归地计算如下:int fibonacci(int n)if(n m1;正整数n的最大加数n1不大于m的划分由n1=m的划分和n1m-1
8、的划分组成。(3)q(n,n)=1+q(n,n-1);正整数n的划分由n1=n的划分和n1n-1的划分组成。2.1 递归的概念例例5 5 整数划分问题整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,因而容易用递归函数直接求解。在本例中,如果设p(n)为正整数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。第17页/共113页2.1 递归的概念例例5 5 整数划分问题整数划分问题前面的几个例子中,问题本身都具有比较明显的递归关系,因而容易用递归函数直接求解。在本例中,如果设p(n)为正整
9、数n的划分数,则难以找到递归关系,因此考虑增加一个自变量:将最大加数n1不大于m的划分个数记作q(n,m)。可以建立q(n,m)的如下递归关系。正整数n的划分数p(n)=q(n,n)。第18页/共113页2.1 递归的概念例例6 Hanoi6 Hanoi塔问题塔问题设a,b,c是3个塔座。开始时,在塔座a上有一叠共n个圆盘,这些圆盘自下而上,由大到小地叠在一起。各圆盘从小到大编号为1,2,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍按同样顺序叠置。在移动圆盘时应遵守以下移动规则:规则1:每次只能移动1个圆盘;规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上;规则3:在满足移动规则1
10、和2的前提下,可将圆盘移至a,b,c中任一塔座上。第19页/共113页以四个盘子为例移动N个圆盘的过程包括:2次移动N-1个圆盘的过程1次移动1个圆盘的过程第20页/共113页void hanoi(int n,int a,int b,int c)if(n 0)hanoi(n-1,a,c,b);move(a,b);hanoi(n-1,c,b,a);表示以塔座b为辅助塔座,将塔座上自下而上,由大到小叠在一起的-1个圆盘按规则移至塔座上并按同样顺序叠放。将塔座a上的圆盘移动到塔座b上去第21页/共113页Hanoi塔问题的复杂性分析=1移动次数()移动次数()移动次数()移动次数()当时移动次数()
11、?第22页/共113页“世界末日问题”1264abc印度布拉玛神庙中的僧人第23页/共113页“世界末日”的推算假定该僧人每秒将一个圆盘从一个塔座移动到另一个塔座完成整个工作的时间 64(秒)18,446,744,073,709,551,615(秒)58505850亿年第24页/共113页算法复杂性同与运算能力的关系算法复杂性C1可解规模N1C2可解规模N2N1与N2的关系lognN11N21N21=N111000nN12N22N22=1000*N12nlognN13N23N231000*N13n2N14N24N24=31.62*N142nN15N25N25=9.963+N15n!N16N26
12、N26 N16假定一个问题有六种不同的算法,算法复杂度分别是(logn,n,nlogn,n2,2n,n!)这六种算法在低速计算机C1和比C1速度快1000倍的计算机C2上运行,N1和N2分别为这六种算法在C1和C2上的可解规模第25页/共113页递归小结优点:优点:结构清晰,可读性强,而且容易用结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。为设计算法、调试程序带来很大方便。缺点:缺点:递归算法的运行效率较低,无论是递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比耗费的计算时间还是占用的存
13、储空间都比非递归算法要多。非递归算法要多。第26页/共113页n求Fibonacci数时有很多重复工作:第27页/共113页解决方法:解决方法:在递归算法中消除递归调用,使其在递归算法中消除递归调用,使其转化为非递归算法。转化为非递归算法。1 1、采用一个用户定义的栈来模拟系统的递归调、采用一个用户定义的栈来模拟系统的递归调用工作栈。该方法通用性强,但本质上还是递用工作栈。该方法通用性强,但本质上还是递归,只不过人工做了本来由编译器做的事情,归,只不过人工做了本来由编译器做的事情,优化效果不明显。优化效果不明显。2 2、用递推来实现递归函数。、用递推来实现递归函数。3 3、通过、通过变换能变换
14、能将一些递归转化为尾递归,从而将一些递归转化为尾递归,从而迭代求出结果。迭代求出结果。后两种方法在时空复杂度上均有较大改善,后两种方法在时空复杂度上均有较大改善,但其适用范围有限。但其适用范围有限。递归小结第28页/共113页分治法的基本思想分治法的基本思想将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立并且与原问题相同。通过递归地求解这些子问题,然后再将各个子问题的解合并,就可以实现对原问题的求解。第29页/共113页分治法的求解过程分治法的求解过程分解(divide):将原问题分解为一系列子问题;递归求解(conquer):递归求解各个子问题。若子问题足够小,则直接求解。
15、合并(merge):将子问题结果合并成原问题的解说明:某些问题不需要合并,比如二分搜索问题第30页/共113页divide-and-conquer(P)if(|P|=n0)adhoc(P);divide P into smaller subinstances P1,P2,Pk;for(i=1,i=k,i+)yi=divide-and-conquer(Pi);return merge(y1,y2,yk);|P|:问题P的规模;adhoc:分治法中的基本子运算n0:阀值如果问题P的规模不超过n0,说明问题已经容易求解,不要再继续分解。利用adhoc(P)直接求解。分治法的设计模式第31页/共113
16、页分治法的分割原则分治法的分割原则实践表明:将一个问题划分成大小相等的k个子问题的处理方法行之有效;通常取k=2第32页/共113页分治法的计算效率分析分治法的计算效率分析通常用递归方程来进行分析分治法将规模为n的问题分成k个规模为n/m的子问题设分解阈值n0=1,且adhoc解规模为1的问题耗费1个单位时间设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题解需要使用f(n)个单位时间。用T(n)表示该分治法divide-and-merge(P)解规模为|P|=n的问题所需要的计算时间第33页/共113页第34页/共113页分治法的适用条件分治法的适用条件分治法的适用条件分
17、治法的适用条件分治法所能解决的问题一般具有以下几个特征:分治法所能解决的问题一般具有以下几个特征:分治法所能解决的问题一般具有以下几个特征:分治法所能解决的问题一般具有以下几个特征:该问题的规模缩小到一定的程度就可以容易地解决;该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规模较小的相同问题,即该问题可以分解为若干个规模较小的相同问题,即该问题具有该问题具有最优子结构性质最优子结构性质利用该问题分解出的子问题的解可以合并为该问题利用该问题分解出的子问题的解可以合并为该问题的解;的解;该问题所分解出的各个子问题是相互独立的,即子该问题所分解出的各个子问题是相互独立的,即子问
18、题之间不包含公共的子问题。问题之间不包含公共的子问题。因为问题的计算复杂性一般是随着问题规模的增加而增加,因此大部分问题满足这个特征。这条特征是应用分治法的前提,它也是大多数问题可以满足的,此特征反映了递归思想的应用能否利用分治法完全取决于问题是否具有这条特征,如果具备了前两条特征,而不具备第三条特征,则可以考虑贪心算法贪心算法或动态规划动态规划。这条特征涉及到分治法的效率,如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然也可用分治法,但一般用动态规划动态规划较好。第35页/共113页二分搜索技术大整数的乘法Strassen矩阵乘法棋盘覆盖合并排序快速排序线
19、性时间选择最近点对问题循环赛日程表第36页/共113页二分搜索技术二分搜索技术第37页/共113页分析:如果n=1即只有一个元素,则只要比较这个元素和x就可以确定x是否在表中。因此这个问题满足分治法的第一个适用条件分析:比较x和a的中间元素amid,若x=amid,则x在L中的位置就是mid;如果xai,同理我们只要在amid的后面查找x即可。无论是在前面还是后面查找x,其方法都和在a中查找x一样,只不过是查找的规模缩小了。这就说明了此问题满足分治法的第二个和第三个适用条件。分析:很显然此问题分解出的子问题相互独立,即在ai的前面或后面查找x是独立的子问题,因此满足分治法的第四个适用条件。二分
20、搜索技术给定已按升序排好序的给定已按升序排好序的n个元素个元素a0:n-1,现要在这,现要在这n个元素中找个元素中找出一特定元素出一特定元素x。分析:分析:该问题的规模缩小到一定的程度就可以容易地解决;该问题的规模缩小到一定的程度就可以容易地解决;该问题可以分解为若干个规模较小的相同问题该问题可以分解为若干个规模较小的相同问题;分解出的子问题的解可以合并为原问题的解;分解出的子问题的解可以合并为原问题的解;分解出的各个子问题是相互独立的。分解出的各个子问题是相互独立的。第38页/共113页逐个地扫描数组a中每个元素,直到找到x为止。在含有n个元素的线性表中查找一个元素在最坏情况下都需要进行n次
21、比较,其时间复杂度为O(n)。利用分治法求解此问题,求解过程是:将n个元素分成个数大致相等彼此独立的两半部分,即an/2的前面或后面两个子问题;将第n/2位置的元素与x进行比较,如果相等,则找到x,算法结束。如果xan/2,则在数组a的后半部分继续搜索x;如果xan/2,则在数组a的前半部分继续搜索x。第39页/共113页二分搜索技术给定已按升序排好序的给定已按升序排好序的n个元素个元素a0:n-1,现要在这,现要在这n个元素中找个元素中找出一特定元素出一特定元素x。据此容易设计出二分搜索算法二分搜索算法:template int BinarySearch(Type a,const Type&
22、x,int l,int r)while(r=l)int m=(l+r)/2;if(x=am)return m;if(x 0时,将2k2k棋盘分割为4个2k-12k-1 子棋盘(a)所示。特殊方格必位于4个较小子棋盘之一中,其余3个子棋盘中无特殊方格。为了将这3个无特殊方格的子棋盘转化为特殊棋盘,可以用一个L型骨牌覆盖这3个较小棋盘的会合处,如(b)所示,从而将原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这种分割,直至棋盘简化为棋盘11。第62页/共113页棋盘覆盖void chessBoard(int tr,int tc,int dr,int dc,int size)if(size=1)
23、return;int t=tile+,/L型骨牌号 s=size/2;/分割棋盘 /覆盖左上角子棋盘 if(dr tr+s&dc tc+s)/特殊方格在此棋盘中 chessBoard(tr,tc,dr,dc,s);else/此棋盘中无特殊方格 /用 t 号L型骨牌覆盖右下角 boardtr+s-1tc+s-1=t;/覆盖其余方格 chessBoard(tr,tc,tr+s-1,tc+s-1,s);/覆盖右上角子棋盘 if(dr=tc+s)/特殊方格在此棋盘中 chessBoard(tr,tc+s,dr,dc,s);else/此棋盘中无特殊方格 /用 t 号L型骨牌覆盖左下角 boardtr+s
24、-1tc+s=t;/覆盖其余方格 chessBoard(tr,tc+s,tr+s-1,tc+s,s);/覆盖左下角子棋盘 if(dr=tr+s&dc=tr+s&dc=tc+s)/特殊方格在此棋盘中 chessBoard(tr+s,tc+s,dr,dc,s);else/用 t 号L型骨牌覆盖左上角 boardtr+stc+s=t;/覆盖其余方格 chessBoard(tr+s,tc+s,tr+s,tc+s,s);复杂度分析复杂度分析T(n)=O(4k)渐进意义下的最优算法第63页/共113页合并排序合并排序第64页/共113页合并排序基本思想:基本思想:将待排序元素分成大小大致相同的2个子集合,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据结构 算法 概要
限制150内