三角函数的图像与性质题型归纳总结.pdf
《三角函数的图像与性质题型归纳总结.pdf》由会员分享,可在线阅读,更多相关《三角函数的图像与性质题型归纳总结.pdf(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、三角函数的图像与性质题型归纳总结 题型归纳及思路提示 题型 1 已知函数解析式确定函数性质【思路提示】一般所给函数为yA sin(x)或yA cos(x),A0,0,要根据 ysin x,ycos x的整体性质求解。一、函数的奇偶性 例1 f(x)sin()x(00,0)的解析式一般不唯一,只有限定的取值范围,才能得到唯一解。依据五点法原理,点的序号与式子的关系是:第一点(即图象上升时与横轴的交点)为0 x,第二点(即图象最高点)为2x,第三点(即图象下降时与横轴的交点)为x,第四点(即图象最低点)为32x,第五点(即图象上升时与横轴的交点)为2.x。.()sin(2)(,)(0)f xAxA
2、Rf例9 函数部分图象如下图所示,则()A.12 B1 C32 D3 1.()sin()(0,0)(0)_.f xAxAf变式 函数部分图象如下图所示,则 2.()cos()()(0)_.23f xAxff 变式2部分图象如下图所示,,则 .()sin()(0,0,|)()f xAxAf x例10 已知函数部分图象如下图所示,求的解析式。变式 1.已知)(cos)(2xxf(,为常数),如果存在正整数和实数使得函数()f x的图象如图所示(图象经过点(1,0),求的值.112yOx 方向二:知性质(如奇偶性、单调性、对称性、最值)求函数解析式。3.()sin()(0,0)R4()2f xxf
3、x 例11已知函数为上的偶函数,点(,0)是其一对称中心,且函数在0,上单调,求函数的解析式。.()4sin()(0,0)23()f xxf x 变式1 已知函数图象的相邻两条对称轴的距离为,且经过点(0,2),求函数的解析式。题型 3:函数的值域(最值)【思路提示】求三角函数的最值,通常要利用正、余弦函数的有界性,一般是通过三角变换化归为下列基本类型处理:2222222(1)sin,sin 1,1;(2)sincossin(),tan;(3)sinsin,sin 1,1;cossin(),sin 1,1;cos2sin2(),sinyaxbatbxtbyaxbxcabxcayaxbxcatb
4、tcxtyaxbxcatbtacxtyaxbxcatbtacx 22 1,1;1(4)cos sin(sincos)(),sincos2,2;21cos sin(sincos)(),sincos2,2;2sinsin(5)csinccosttyaxxbxxcabtacxxttyaxxbxxcabtacxxtaxbaxbyyxdxd 与根据正、余弦函数的有界性,既可用分析法求最值,也可用不等sincosxx式法求最值,更可用数形结合法求最值,但都必须要注意、的范围。12.()sincos11.1.122f xxxABCD例函数的最小值是().()sincos()333.2,2.3,3.1,1.,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 图像 性质 题型 归纳 总结
限制150内