高中数学教学教案模板.pdf
《高中数学教学教案模板.pdf》由会员分享,可在线阅读,更多相关《高中数学教学教案模板.pdf(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学教学教案模板范文高中数学教学教案模板范文作为一名无私奉献的老师,就难以避开地要预备教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?下面我带来高中数学教学教案模板范文 5 篇,盼望大家喜爱。高中数学教学教案模板范文篇 1教学目标:1.理解流程图的选择结构这种基本规律结构.2.能识别和理解简洁的框图的功能.3.能运用三种基本规律结构设计流程图以解决简洁的问题.教学方法:1.通过仿照、操作、探究,经受设计流程图表达求解问题的过程,加深对流程图的感知.2.在详细问题的解决过程中,把握基本的流程图的画法和流程图的三种基本规律结构.教学过程:一、问题情境1.情境:某铁路客运部门规定甲、
2、乙两地之间旅客托运行李的费用为其中(单位:)为行李的重量.试给出计算费用(单位:元)的一个算法,并画出流程图.二、同学活动同学争论,老师引导同学进行表达.解 算法为:输入行李的重量;假如,那么,否则;输出行李的重量和运费.上述算法可以用流程图表示为:老师边讲解边画出第 10 页图 1-2-6.在上述计费过程中,其次步进行了推断.三、建构数学1.选择结构的概念:先依据条件作出推断,再打算执行哪一种操作的结构称为选择结构.如图:虚线框内是一个选择结构,它包含一个推断框,当条件成立(或称条件为“真”)时执行,否则执行.2.说明:(1)有些问题需要按给定的条件进行分析、比较和推断,并按判断的不怜悯况进
3、行不同的操作,这类问题的实现就要用到选择结构的设计;(2)选择结构也称为分支结构或选取结构,它要先依据指定的条件进行推断,再由推断的结果打算执行两条分支路径中的某一条;(3)在上图的选择结构中,只能执行和之一,不行能既执行,又执行,但或两个框中可以有一个是空的,即不执行任何操作;(4)流程图图框的外形要规范,推断框必需画成菱形,它有一个进入点和两个退出点.3.思索:教材第 7 页图所示的算法中,哪一步进行了推断?高中数学教学教案模板范文篇 2教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.(2)进一步理解曲线的方程和方程的曲线.(3)初步把握求曲线方程的方法.(4)通过本节
4、内容的教学,培育同学分析问题和转化的力量.教学重点、难点:求曲线的方程.教学用具:计算机.教学方法:启发引导法,争论法.教学过程:【引入】1.提问:什么是曲线的方程和方程的曲线.同学思索并回答.老师强调.2.坐标法和解析几何的意义、基本问题.对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过讨论方程的性质间接地来讨论曲线的性质,这一讨论几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:(1)依据已知条件,求出表示平面曲线的方程.(2)通过方程,讨论平面曲线的性质.事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先讨论如何求出曲线
5、方程,再讨论如何用方程讨论曲线.本节课就初步讨论曲线方程的求法.【问题】如何依据已知条件,求出曲线的方程.【实例分析】例 1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.首先由同学分析:依据直线方程的学问,运用点斜式即可解决.解法一:易求线段的中点坐标为(1,3),由斜率关系可求得 l 的斜率为于是有即 l 的方程为分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过恰好就是所求的吗?或者说就是直线的方程?依据是什么,有证明吗?(通过老师引导,是同学意识到这是以前没有解决的问题,应当证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的
6、解.设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.设点的坐标是方程的任意一解,则到、的距离分别为所以,即点在直线上.综合(1)、(2),是所求直线的方程.至此,证明完毕.回顾上述内容我们会发觉一个好玩的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最终得到式子,假如去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:解法二:设是线段的垂直平分线上任意一点,也就是点属于集合由两点间的距离公式,点所适合的条件可表示为将上式两边平方,整理得果真胜利,
7、当然也不要忘了证明,即验证两条是否都满意.明显,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于其次条上边已证.这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又特别自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.让我们用这个方法试解如下问题:例 2:点与两条相互垂直的直线的距离的积是常数求点的轨迹方程.分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,明显用已知中两条相互垂直的直线作坐标轴,建立直角坐标系.然后仿按例 1 中的解法进行求解.求解过程略.【概括总结】通过同学争论,师生共同总结:分析上面两个例题的求解过程,
8、我们总结一下求解曲线方程的大体步骤:首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最终整理出方程,并证明或修正.说得更精确一点就是:(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;(2)写出适合条件的点的集合;(3)用坐标表示条件,列出方程;(4)化方程为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点.一般状况下,求解过程已表明曲线上的点的坐标都是方程的解;假如求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常状况下证明可省略,不过特别状况要说明.上述五个步骤可简记为:建系设点;写出集合;列
9、方程;化简;修正.下面再看一个问题:例 3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是 2,求这条曲线的方程.【动画演示】用几何画板演示曲线生成的过程和外形,在运动变化的过程中查找关系.解:设点是曲线上任意一点,轴,垂足是(如图 2),那么点属于集合由距离公式,点适合的条件可表示为将式移项后再两边平方,得化简得由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2 中所示.【练习巩固】题目:在正三角形内有一动点,已知到三个顶点的距离分别为、,且有,求点轨迹方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 教学 教案 模板
限制150内