水泥土搅拌法.pptx
《水泥土搅拌法.pptx》由会员分享,可在线阅读,更多相关《水泥土搅拌法.pptx(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 水泥土搅拌法加固软土技术,具有以下独特的优点:水泥土搅拌法由于将固化剂和原地基软土就地搅拌混合,因而最大限度地利用了原土;搅拌时无振动、无噪音和无污染,可在市区内和密集建筑群中进行施工;搅拌时不会使地基侧向挤出,所以对周围原有建筑物及地下沟管影响很小;水泥土搅拌法形成的水泥土加固体,可作为竖向承载的复合地基、基坑工程围护挡墙、基坑被动区加固、防渗帷幕、大体积水泥稳定土等,其设计灵活,可按不同地基土的性质及工程设计要求,合理选择固化剂及其配方;根据上部结构的需要,可灵活地采用柱状、壁状、格栅状和块状等加固形式;与钢筋混凝土桩基相比,可节约大量的钢材,并降低造价。第1页/共39页 水泥土搅拌法可
2、用于增加软土地基的承载能力,减少沉降量,提高边坡的稳定性,适用于以下情况:作为建筑物或构筑物的地基、厂房内具有地面荷载的地坪高填方路堤下基层等;进行大面积地基加固、以防止码头岸壁的滑动、深基坑开挖时坍塌、坑底隆起和减少软土中地下构筑物的沉降;作为地下防渗墙以阻止地下渗透水流,对桩侧或板桩背后的软土加固以增加侧向承载能力。第2页/共39页 2 加固机理 (1)水泥的水解和水化反应 普通硅酸盐水泥主要是由氧化钙、二氧化硅、三氧化二铝、三氧化二铁及三氧化硫等组成,由这些不同的氧化物分别组成了不同的水泥矿物:硅酸三钙、硅酸二钙、铝酸三钙、铁铝酸四钙、硫酸钙等。用水泥加固软土时,水泥颗粒表面的矿物很快与
3、软土中的水发生水解和水化反应,生成氢氧化钙、含水硅酸钙、含水铝酸钙及含水铁酸钙等化合物。(2)土颗粒与水泥水化物的作用 当水泥的各种水化物生成后,有的自身继续硬化,形成水泥石骨架;有的则与其周围具有一定活性的粘土颗粒发生反应。第3页/共39页 离子交换和团粒化作用 粘土和水结合时就表现出一种胶体特征,如土中含量最多的氧化硅遇水后,形成硅酸胶体微粒,其表面带有钠离子Na或钾离子K,它们能和水泥水化生成的氢氧化钙中钙离子ca2进行当量吸附交换,使较小的土颗粒形成较大的土团粒,从而使土体强度提高。硬凝反应 随着水泥水化反应的深入,溶液中析出大量的钙离子,当其数量超过离子交换的需要量后,在碱性环境中,
4、能使组成粘土矿物的二氧化硅及三氧化二铝的部分或大部分与钙离子进行化学反应,逐渐生成不溶于水的稳定结晶化合物,增大了水泥土的强度。第4页/共39页 (3)碳酸化作用 水泥水化物中游离的氢氧化钙能吸收水中和空气中的二氧化碳,发生碳酸化反应,生成不溶于水的碳酸钙,这种反应也能使水泥土增加强度,但增长的速度较慢,幅度也较小。由于搅拌机械的切削搅拌作用,实际上不可避免地会留下一些未被粉碎的大小土团。在拌入水泥后将出现水泥浆包裹土团的现象,而土团间的大孔隙基本上已被水泥颗粒填满。所以,加固后的水泥土中形成一些水泥较多的微区,而在大小土团内部则没有水泥。只有经过较长的时间,土团内的土颗粒在水泥水解产物渗透作
5、用下,才逐渐改变其性质。因此在水泥土中不可避免地会产生强度较大和水稳性较好的水泥石区和强度较低的土块区。可见,搅拌越充分,土块被粉碎得越小,水泥分布到土中越均匀,则水泥土结构强度的离散性越小,其宏观的总体强度也越高。第5页/共39页 3.水泥土的物理力学特性 (1)水泥土的物理性质 含水量 水泥土在硬凝过程中,由于水泥水化等反应,使部分自由水以结晶水的形式固定下来,故水泥土的含水量略低于原土样的含水量,水泥土含水量比原土样含水量减少0.57.,且随着水泥掺入比的增加而减小。重度 由于拌入软土中的水泥浆的重度与软土的重度相近,所以水泥土的重度与天然软土的重度相差不大,水泥土的重度仅比天然软土重度
6、增如0.53.0,所以采用水泥土搅拌法加固厚层软土地基时,其加固部分对于下部未加固部分不致产生过大的附加荷重,也不会产生较大的附加沉降。第6页/共39页 相对密度 由于水泥的相对密度为3.1,比一般软土的相对密度2.652.75要大,故水泥土的相对密度比天然软土的相对密度稍大。水泥土相对密度比天然软土的相对密度增加0.72.5。渗透系数 水泥土的渗透性随水泥掺入比的增大和养护龄期的增长而减小,一般可达10-810-5cm/s数量级。水泥加固淤泥质粘土能减小原天然土层的水平向渗透系,这对深基坑施工是有利的,可以利用它作为防渗帷幕。第7页/共39页 (2)水泥土的力学性质 无侧限抗压强度及其影响因
7、素。水泥土的无侧限抗压强度一般为3004000kPa,即比天然软土大几十倍至数百倍。其变形特征随强度不同而介于脆性体与弹塑性体之间。a.水泥掺入比aw 水泥土的强度随着水泥掺入比的增加而增大(见图7-14),当aw5时由于水泥与土的反应过弱,水泥土固化程度低,强度离散性也较大,故在深层搅拌法的实际施工中,选用的水泥掺入比以大于5为宜。第8页/共39页第9页/共39页 b.龄期对强度的影响 水泥土强度随着龄期的增长而增大,在龄期超过28天后,强度仍有明显增长(见图7-15)。为了降低造价,对承重搅拌桩试块国内外都取90d龄期为标准龄期。对起支挡作用承受水平荷载的搅拌桩,为了缩短养护期,水泥土的强
8、度标准取28d龄期为标准龄期。第10页/共39页 在其他条件相同时,不同龄期的水泥土抗压强度间大致呈线性关系,其经验关系如下:第11页/共39页 c.水泥强度等级对强度的影响 水泥强度等级直接影响水泥土的强度,水泥强度等级提高10级,水泥土强度fcu约增大2030。d.土样含水量对强度的影响 当水泥土的配比相同时,其强度随着土样含水量的降低而增大。试验表明,当土的含水量在5085范围内变化时,含水量每降低10,水泥土强度可提高30。e.土样中有机质含量对强度的影响 有机质含量少的水泥土强度比有机质含量高的水泥土强度高得多。由于有机质使土壤具有较大的水容量和塑性,较大的膨胀性和低渗透性,并使土壤
9、具有酸性,这些因素都阻碍水泥水化反应的进行。第12页/共39页 f.外掺剂对强度的影响 不同的外掺剂对水泥土强度有着不同的影响,例如,木质素磺酸钙对水泥土强度增长影响不大,主要起减水作用;石膏、三乙醇胺对水泥土强度有增强作用,而其增强效果对不同土样和不同水泥掺入比又有所不同,所以选择合适的外掺剂可以提高水泥土强度或节省水泥用量;当掺入与水泥等量的粉煤灰后,水泥土强度可提高10,因此采用水泥土搅拌法加固软土时掺入粉煤灰,不仅可消耗工业废料,水泥土强度还有所提高。第13页/共39页 抗拉强度 水泥土的抗拉强度随抗压强度的增长而提高,但远较抗压强度低,部分试验结果如表7-3所示。抗拉强度约为抗压强度
10、的1/101/15,与混凝土的抗拉/抗压强度之比值相近。抗剪强度 用高压三轴仪进行剪切试验表明:水泥土的抗剪强度随抗压强度的增加而提高。变形模量 当垂直应力达到50%无侧限抗压强度时,水泥土的应力与应变的比值,称之为水泥土的变形模量E50。第14页/共39页 压缩系数和压缩模量 水泥土试件的压缩系数a1-2约为(2.03.5)10-5kPa-1。,其相应的压缩模量E=(60100)MPa。水泥土的抗冻性能 水泥土试块经长期冰冻后的强度与冰冻前的强度相比几乎没有增长。但恢复正温后其强度能继续提高,冻后正常养护90天的强度与标准强度非常接近,抗冻系数达0.9以上。在自然温度不低于-15的条件下,冻
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 水泥 搅拌
限制150内