Matlab概率统计.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《Matlab概率统计.doc》由会员分享,可在线阅读,更多相关《Matlab概率统计.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、转载Matlab概率统计工具箱(3)(2010-04-11 15:25:38) 转载原文标签: 转载分类:毕业设计原文地址:Matlab概率统计工具箱(3)作者:我心飞扬4.8 假设检验4.8.1 已知,单个正态总体的均值的假设检验(U检验法)函数 ztest格式 h = ztest(x,m,sigma) % x为正态总体的样本,m为均值0,sigma为标准差,显著性水平为0.05(默认值)h = ztest(x,m,sigma,alpha) %显著性水平为alphah,sig,ci,zval = ztest(x,m,sigma,alpha,tail) %sig为观察值的概率,当sig为小概率
2、时则对原假设提出质疑,ci为真正均值的1-alpha置信区间,zval为统计量的值.说明 若h=0,表示在显著性水平alpha下,不能拒绝原假设;若h=1,表示在显著性水平alpha下,可以拒绝原假设.原假设:,若tail=0,表示备择假设:(默认,双边检验);tail=1,表示备择假设:(单边检验);tail=-1,表示备择假设:(单边检验).例4-74 某车间用一台包装机包装葡萄糖,包得的袋装糖重是一个随机变量,它服从正态分布.当机器正常时,其均值为0.5公斤,标准差为0.015.某日开工后检验包装机是否正常,随机地抽取所包装的糖9袋,称得净重为(公斤)0.497, 0.506, 0.51
3、8, 0.524, 0.498, 0.511, 0.52, 0.515, 0.512问机器是否正常解:总体和已知,该问题是当为已知时,在水平下,根据样本值判断=0.5还是.为此提出假设:原假设:备择假设: X=0.497,0.506,0.518,0.524,0.498,0.511,0.52,0.515,0.512; h,sig,ci,zval=ztest(X,0.5,0.015,0.05,0)结果显示为h =1sig =0.0248 %样本观察值的概率ci =0.5014 0.5210 %置信区间,均值0.5在此区间之外zval =2.2444 %统计量的值结果表明:h=1,说明在水平下,可拒
4、绝原假设,即认为包装机工作不正常.4.8.2 未知,单个正态总体的均值的假设检验( t检验法)函数 ttest格式 h = ttest(x,m) % x为正态总体的样本,m为均值0,显著性水平为0.05h = ttest(x,m,alpha) %alpha为给定显著性水平h,sig,ci = ttest(x,m,alpha,tail) %sig为观察值的概率,当sig为小概率时则对原假设提出质疑,ci为真正均值的1-alpha置信区间.说明 若h=0,表示在显著性水平alpha下,不能拒绝原假设;若h=1,表示在显著性水平alpha下,可以拒绝原假设.原假设:,若 tail=0,表示备择假设:
5、(默认,双边检验);tail=1,表示备择假设:(单边检验);tail=-1,表示备择假设:(单边检验).例4-75 某种电子元件的寿命X(以小时计)服从正态分布,2均未知.现测得16只元件的寿命如下159 280 101 212 224 379 179 264 222 362 168 250149 260 485 170问是否有理由认为元件的平均寿命大于225(小时)解:未知,在水平下检验假设:,: X=159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170; h,sig,ci=ttest(X,225,0.05,1)结果
6、显示为:h =0sig =0.2570ci =198.2321 Inf %均值225在该置信区间内结果表明:H=0表示在水平下应该接受原假设,即认为元件的平均寿命不大于225小时.4.8.3 两个正态总体均值差的检验(t检验)两个正态总体方差未知但等方差时,比较两正态总体样本均值的假设检验函数 ttest2格式 h,sig,ci=ttest2(X,Y) %X,Y为两个正态总体的样本,显著性水平为0.05h,sig,ci=ttest2(X,Y,alpha) %alpha为显著性水平h,sig,ci=ttest2(X,Y,alpha,tail) %sig为当原假设为真时得到观察值的概率,当sig为
7、小概率时则对原假设提出质疑,ci为真正均值的1-alpha置信区间.说明 若h=0,表示在显著性水平alpha下,不能拒绝原假设;若h=1,表示在显著性水平alpha下,可以拒绝原假设.原假设:, (为X为期望值,为Y的期望值)若 tail=0,表示备择假设:(默认,双边检验);tail=1,表示备择假设:(单边检验);tail=-1,表示备择假设:(单边检验).例4-76 在平炉上进行一项试验以确定改变操作方法的建议是否会增加钢的产率,试验是在同一只平炉上进行的.每炼一炉钢时除操作方法外,其他条件都尽可能做到相同.先用标准方法炼一炉,然后用建议的新方法炼一炉,以后交替进行,各炼10炉,其产率
8、分别为(1)标准方法:78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.5 76.7 77.3(2)新方法: 79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1设这两个样本相互独立,且分别来自正态总体和,均未知.问建议的新操作方法能否提高产率 (取=0.05)解:两个总体方差不变时,在水平下检验假设:,: X=78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.5 76.7 77.3;Y=79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1; h,si
9、g,ci=ttest2(X,Y,0.05,-1)结果显示为:h =1sig =2.1759e-004 %说明两个总体均值相等的概率很小ci =-Inf -1.9083结果表明:H=1表示在水平下,应该拒绝原假设,即认为建议的新操作方法提高了产率,因此,比原方法好.4.8.4 两个总体一致性的检验秩和检验函数 ranksum格式 p = ranksum(x,y,alpha) %x,y为两个总体的样本,可以不等长,alpha为显著性水平p,h = ranksum(x,y,alpha) % h为检验结果,h=0表示X与Y的总体差别不显著h=1表示X与Y的总体差别显著p,h,stats = ranks
10、um(x,y,alpha) %stats中包括:ranksum为秩和统计量的值以及zval为过去计算p的正态统计量的值说明 P为两个总体样本X和Y为一致的显著性概率,若P接近于0,则不一致较明显.例4-77 某商店为了确定向公司A或公司B购买某种商品,将A和B公司以往的各次进货的次品率进行比较,数据如下所示,设两样本独立.问两公司的商品的质量有无显著差异.设两公司的商品的次品的密度最多只差一个平移,取=0.05.A:7.0 3.5 9.6 8.1 6.2 5.1 10.4 4.0 2.0 10.5B:5.7 3.2 4.1 11.0 9.7 6.9 3.6 4.8 5.6 8.4 10.1 5
11、.5 12.3解:设,分别为A,B两个公司的商品次品率总体的均值.则该问题为在水平=0.05下检验假设:,: A=7.0 3.5 9.6 8.1 6.2 5.1 10.4 4.0 2.0 10.5; B=5.7 3.2 4.1 11.0 9.7 6.9 3.6 4.8 5.6 8.4 10.1 5.5 12.3; p,h,stats=ranksum(A,B,0.05)结果为:p =0.8041h =0stats =zval: -0.2481ranksum: 116结果表明:一方面,两样本总体均值相等的概率为0.8041,不接近于0;另一方面,H=0也说明可以接受原假设,即认为两个公司的商品的质
12、量无明显差异.4.8.5 两个总体中位数相等的假设检验符号秩检验函数 signrank格式 p = signrank(X,Y,alpha) % X,Y为两个总体的样本,长度必须相同,alpha为显著性水平,P两个样本X和Y的中位数相等的概率,p接近于0则可对原假设质疑.p,h = signrank(X,Y,alpha) % h为检验结果:h=0表示X与Y的中位数之差不显著,h=1表示X与Y的中位数之差显著.p,h,stats = signrank(x,y,alpha) % stats中包括:signrank为符号秩统计量的值以及zval为过去计算p的正态统计量的值.例4-78 两个正态随机样本
13、的中位数相等的假设检验 x=normrnd(0,1,20,1); y=normrnd(0,2,20,1); p,h,stats=signrank(x,y,0.05)p =0.3703h =0stats =zval: -0.8960signedrank: 81结果表明:h=0表示X与Y的中位数之差不显著4.8.6 两个总体中位数相等的假设检验符号检验函数 signtest格式 p=signtest(X, Y, alpha) % X,Y为两个总体的样本,长度必须相同,alpha为显著性水平,P两个样本X和Y的中位数相等的概率,p接近于0则可对原假设质疑.p, h=signtest(X, Y, al
14、pha) % h为检验结果:h=0表示X与Y的中位数之差不显著,h=1表示X与Y的中位数之差显著.p,h,stats = signtest(X,Y,alpha) % stats中sign为符号统计量的值例4-79 两个正态随机样本的中位数相等的假设检验 X=normrnd(0,1,20,1); Y=normrnd(0,2,20,1); p,h,stats=signtest(X,Y,0.05)p =0.2632h =0stats =sign: 7结果表明:h=0表示X与Y的中位数之差不显著4.8.7 正态分布的拟合优度测试函数 jbtest格式 H = jbtest(X) %对输入向量X进行Ja
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Matlab 概率 统计
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内