怎样学“概率论与数理统计”.docx
《怎样学“概率论与数理统计”.docx》由会员分享,可在线阅读,更多相关《怎样学“概率论与数理统计”.docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、考研数学概率论与数理统计初步题型总结(新浪网 海天教育) 目前,大部分同学开始了概率论和数理统计的复习,本文主要想对同学们近期的复习做一个简单的指导。概率论与数理统计初步主要考查考生对研究随机现象规律性的基本概念、基本理论和基本方法的理解,以及运用概率统计方法分析和解决实际问题的能力。 常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有: (1)确定事件间的关系,进行事件的运算; (2)利用事件的关系进行概率计算; (3)利用概率的性质证明概率等式或计算概率; (4)有关古典概型、几何概型的概率计算; (5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率; (
2、6)有关事件独立性的证明和计算概率; (7)有关独重复试验及伯努利概率型的计算; (8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率; (9)由给定的试验求随机变量的分布; (10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率; (11)求随机变量函数的分布(12)确定二维随机变量的分布; (13)利用二维均匀分布和正态分布计算概率; (14)求二维随机变量的边缘分布、条件分布; (15)判断随机变量的独立性和计算概率; (16)求两个独立随机变量函数的分布; (17)利用随机变量的数学期望
3、、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差; (18)求随机变量函数的数学期望; (19)求两个随机变量的协方差、相关系数并判断相关性; (20)求随机变量的矩和协方差矩阵; (21)利用切比雪夫不等式推证概率不等式; (22)利用中心极限定理进行概率的近似计算; (23)利用t分布、2分布、F分布的定义、性质推证统计量的分布、性质; (24)推证某些统计量(特别是正态总体统计量)的分布; (25)计算统计量的概率; (26)求总体分布中未知参数的矩估计量和极大似然估计量; (27)判断估计量的无偏性、有效性和一致性; (28)求单个或两个正态总体参
4、数的置信区间; (29)对单个或两个正态总体参数假设进行显著性检验; (30)利用2检验法对总体分布假设进行检验。 这一部分主要考查概率论与数理统计的基本概念、基本性质和基本理论,考查基本方法的应用。对历年的考题进行分析,可以看出概率论与数理统计的试题,即使是填空题和选择题,只考单一知识点的试题很少,大多数试题是考查考生的理解能力和综合应用能力。要求考生能灵活地运用所学的知识,建立起正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。 在解答这部分考题时,考生易犯的错误有: (1)概念不清,弄不清事件之间的关系和事件的结构; (2)对试验分析错误,概率模
5、型搞错; (3)计算概率的公式运用不当; (4)不能熟练地运用独立性去证明和计算; (5)不能熟练掌握和运用常用的概率分布及其数字特征; (6)不能正确应用有关的定义、公式和性质进行综合分析、运算和证明。 更多信息请访问:新浪考研频道考研论坛 特别说明:由于各方面情况的不断调整与变化,新浪网所提供的所有考试信息仅供参考,敬请考生以权威部门公布的正式信息为准。 怎样学“概率论与数理统计”“概率论与数理统计”是理工科大学生的一门必修课程,也是报考硕士研究生时数学试卷中重要内容之一其中数学一占20%?,数学三占25%?,数学四占25%?(概率论).由于该学科与生活实践和科学试验有着紧密的联系,是许多
6、新发展的前沿学科(如控制论、信息论、可靠性理论、人工智能等)的基础,因此学好这一学科是十分重要的.? 首先我们从历届考研成绩进行分析,观察一下高等数学与概率统计之间有什么差异其一是概率统计的平均得分率往往低于高等数学平均得分率.其二高等数学的得分分布呈两头小中间大现象,即低分和高分比例小,而中间分数段比例大,而概率统计的得分率却是低分多, 中间分数少,高分较多的现象.为什么会发生上述差异?经分析发现虽然高等数学与概率统计同属数学学科,但各有自己的特点. 高等数学主要是通过学习极限、导数和积分等知识解决有关(一维或多维)函数的有关性质和图象的问题, 它与中学的数学有着密切联系而且有着相同的思想方
7、法和解题思路.因而在概念上理解比较容易接受(当然也有比较抽象的内容如中值定理等).另一方面由于涉及许多具体初等函数,在求导数和积分时有许多计算上的技巧,需要大量练习以熟练掌握这些技巧,因而部分学生即使概念不十分清楚,但仍能正确解答相当多的试题,在考研中得到一定的成绩.? 而在“概率论与数理统计”的学习中更注重的是概念的理解,而这正是广大学生所疏忽的,在考研复习时几乎有近一半以上学生对“什么是随机变量”、“为什么要引进随机变量”仍说不清楚.对于涉及随机变量的独立,不相关等概念更是无从着手,这一方面是因为高等数学处理的是“确定”的事件.如函数y=f(x),当x确定后y有确定的值与之对应.而概率论中
8、随机变量X在抽样前是不确定的,我们只能由随机试验确定它落在某一区域中的概率,要建立用“不确定性”的思维方法往往比较困难,如果套用确定性的思维方法就会出错.由于基本概念没有搞懂,即使是十分简单的题目也难以得分.从而造成低分多的现象.另一方面由于概率论中涉及的计算技巧不多,除了古典概型,几何概型和计算二维随机变量的函数分布时如何确定积分上、下限有一些计算的难点,其他的只是数值或者积分、导数的计算.因而如果概念清楚,那么解题往往很顺利且易得到正确答案,这正是高分较多的原因.? 根据上面分析,启示我们不能把高等数学的学习方法照搬到“概率统计”的学习上来,而应按照概率统计自身的特点提出学习方法,才能取得
9、“事半功倍”的效果.下面我们分别对“概率论”和“数理统计”的学习方法提出一些建议.? 一、 学习“概率论”要注意以下几个要点 1. 在学习“概率论”的过程中要抓住对概念的引入和背景的理解,例如为什么要引进“随机变量”这一概念。这实际上是一个抽象过程。正如小学生最初学数学时总是一个苹果加2个苹果等于3个苹果,然后抽象为1+2=3.对于具体的随机试验中的具体随机事件,可以计算其概率,但这毕竟是局部的,孤立的,能否将不同随机试验的不同样本空间予以统一,并对整个随机试验进行刻画?随机变量X(即从样本空间到实轴的单值实函数)的引进使原先不同随机试验的随机事件的概率都可转化为随机变量落在某一实数集合B的概
10、率,不同的随机试验可由不同的随机变量来刻画. 此外若对一切实数集合B,知道P(XB). 那么随机试验的任一随机事件的概率也就完全确定了.所以我们只须求出随机变量X的分布P(XB). 就对随机试验进行了全面的刻画.它的研究成了概率论的研究中心课题.故而随机变量的引入是概率论发展历史中的一个重要里程碑.类似地,概率公理化定义的引进,分布函数、离散型和连续型随机变量的分类,随机变量的数学特征等概念的引进都有明确的背景,在学习中要深入理解体会.? 2. 在学习“概率论”过程中对于引入概念的内涵和相互间的联系和差异要仔细推敲,例如随机变量概念的内涵有哪些意义:它是一个从样本空间到实轴的单值实函数X(w)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 怎样 概率论 数理统计
限制150内