《分数与除法教学反思7篇.docx》由会员分享,可在线阅读,更多相关《分数与除法教学反思7篇.docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、该文本为Word版,下载可编辑分数与除法教学反思7篇 书写一份出色的教学反思,在今后的教学中有着很好的效果,教学反思是老师们在日常教学结束后需要书写的一种文体,范文社我今天就为您带来了分数与除法教学反思7篇,相信一定会对你有所帮助。 分数与除法教学反思篇1 (看了小雒老师的这篇文章,变亦喜亦忧。喜的是,雒老师很用心,解答分数乘除法问题的规律是梳理的一清二楚,头头是道;忧的是,这样教学直奔了目的地,沿途的风光可曾让学生领略?二十年前,我初踏上岗位,熟记的就是文中的所说这个简便易行的口诀。今天,我们教师心中仍然要有这个,但是提醒大家:只让学生记住这个口诀行吗?我们要培养的不是解题的机器。我们应该仔
2、细想一想:这部分教学的过程性目标是什么?学生能从中受益吗?解题过程中学生的思维能不能得到提高?让我们共同讨论于华静) 最近一段时间,从分数的乘法到分数的除法,对于单纯的计算方法孩子们脸上似乎没有露出愁色。但是对于一直相伴至今的分数应用题,孩子们理解与区别起来似乎确实比较吃力,各种数量关系确实比较难分析、判断。怎样选择一个合适的解答方法,是孩子们掌握这类应用题的关键,对此,我总结以下几点体会: 1、一找、二看、三判断 分数应用题的基础题型是简单的分数乘法应用题,要抓住的就是分数乘法的意义:单位“1”分率=对应量,包括分数除法应用题,仍然使用的是分数乘法的意义来进行分析解答,所以要把这个关系式吃透
3、,同时还要让学生理解什么是分率,什么是对应的量,从中总结出:“一找:找单位“1”;二看:单位“1”是已知还是未知;三:判断已知用乘法,未知用除法。在简单的分数乘法除法应用题中,反复使用这个解答步骤以达到熟练程度,对后面的较复杂分数应用题教学将有相当大的帮助。 2、弄清对应量、对应分数、单位1 教到复杂的分数应用题时,要抓住例题中最具有代表性的也是最难的两种题型加强训练,就是“已知对应量、对应分率、求单位1”和“比一个数多(少)几分之几”这两种题型,对待前者要充分利用线段图的优势,让学生从意义上明白单位“1”对应分数=对应量,所以单位“1”=对应量对应分数。在训练中牢固掌握这种解题方式,会熟练寻
4、找题中一个已知量也就是“对应量”的对应分数。对于后者,要加强转化训练,要熟练转化“甲比乙多(少)几分之几”变成“甲是乙的1(或)几分之几”,对这种转化加强训练后学生就能轻松地从“多(少)几分之几”的关键句中得出“是几分之几”的关键句,从而把较复杂应用题转变成前面所学过的简单应用题。 3、线段图、数量关系、关系转化 (1)画线段图进行分析。对于一些简单的分数应用题,教师要教会学生画线段图,然后引导学生观察线段图,画线段图是强调量在下,率在上。如果单位“1”对应的数量是已知的,就用乘法,找未知数量对应的分率;如果单位“1”对应的数量是未知的,就用方程或除法,找已知数量对应的分率。 (2)找数量关系
5、进行分析。有许多的分数应用题,题目中都有一句关键分率句,教师要引导学生把这一句话翻译成一个等量关系,然后根据这一个数量关系,即可求出题目中的问题,找到解决问题的方向。这一点必须教会给学生。 (3)用按比例分配的方法进行分析。有部分分数应用题,可以把两个数量之间的关系转化为比,然后利用按比例分配的方法进行解答。当然还要鼓励学生学会用多种方法解答。 总之,分数应用题的学习的确有难度,但并非难以理解和接受,我将其以上三点用了六句话进行总结了一下,做分数应用题时,“先找单位1,再看知不知,已知用乘法,未知用除法,比1多 加,比1少则减”.所以只要充分了解教材,了解知识结构中前后知识点的关系,这部分的教
6、学会变得比较轻松。 分数与除法教学反思篇2 分数应用题是六年级下期的内容,它的教学是小学数学教学中的一个重点,也是一个难点。如何激发学生主动积极地参与学习的全过程呢? 教学时,我没有采用书上的情境,而是从学生的生活实际引入。例如:我们班有多少女生?有多少男生?女生占全班人数的几分之几?现在知道“全班人数”和“女生占全班人数的几分之几”求女生有多少人,怎样求?学生很快就知道列出乘法算式解决。反过来,知道“女生人数”和“女生占全班人数的几分之几”求全班人数呢?这样引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。 让学生理解题中的数量关系是解决分数除法应用
7、题的关键。教学中,我通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律,从而让学生体会并归纳出:解答分数除法应用题的关键是从题目的关键句找出数量之间的相等关系。本课重点是要让学生学会用方程的方法解决有关的分数问题,体会用方程解决实际问题的重要模型。为了帮助学生理解,我借助线段图的直观功能,引导孩子们理清解题思路,找出数量间的相等关系。 在学生学会分析数量关系后,我把分数除法应用题与分数乘法应用题结合起来教学,让学生通过讨论交流对比,感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力。 在学生掌握了用
8、方程解决问题的方法后,我又鼓励他们对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。教学中,给学生提供探究的平台,先让学生独立思考,探究解题方法,在独立探究的基础上,再让学生小组合作讨论,探究不同的解题方法。使学生经历独立探究、小组探究的过程,使学生对“分数除法问题”的算法有初步的感悟,对这类应用题数量关系及解法有清晰的理解,为进入更深层次的学习做好充分的准备。 分数与除法教学反思篇3 “分数与除法”这一教学内容,是人教版小学数学第十册,第四单元中第一小节的内容。在学生学习本课内容之前,已掌握了分数的意义,知道了分
9、数的产生等知识,学完这节课的内容将为今后学习假分数以及假分数化为整数或带分数做好准备。所以让学生很好的掌握分数与除法之间的关系,十分重要。 这节课的教学目标主要有两个,第一,让学生掌握分数与除法的关系,第二,要让学生了解两种分法。让学生体会两种分法的全过程。 在本节课的教学中,我通过从解决简单的问题入手提出了这样几个问题:把6张饼平均分给3个人每人分得几张饼?把1张饼平均分给2个人每人分得几张饼?把1张饼平均分给3个人每人分得几张饼?学生分别口答每人分得2张、0.5张、1/3张。在此基础上引导学生观察三个算式和得数,学生很快得出一个结论:两数相除,商可能是整数、小数或是分数,以此作为本节课的切
10、入点。 让学生明白1张饼的3/4相当于3块饼的1/4是本节课的重点也是难点,我通过让学生用3张圆形纸片动手分一分,并让学生思考把3块饼平均分给4个人可以有几种分法,学生通过动手操作,得出两种不同的分法,引申出两种含义,即1张饼的3/4以及3块饼的1/4,同时让学生明白1张饼的3/4相当于3块饼的1/4,也就是3/4张饼。通过这一过程,学生充分理解了343/4的算理。 以上这一系列的教学活动,目的是让学生通过动手操作,亲身体验,探究分数与除法的关系,从而激发学生的探究意识,引发学生的数学思考,使学生学会学习、学会思考。 在本节课的教学当中,我认为存在以下几点不足: 1、课堂上对于学生的兴趣培养、
11、激励性的语言还有些欠缺,学生显得不够积极主动。性格内向的学生占绝大多数,部分学生害怕在众老师面前出错,而显得有些胆怯.由于多方面的原因,道致课堂气氛不够活跃。 2、学生的语言表达能力太差。课堂上不能用较为准确的语言来表述分数与除法的关系,今后应予以加强。 3、教学时间安排欠合理,课堂练习太少。 针对以上存在的几点不足,提出自己今后应努力的方向: 今后要多研读课标,熟读教材,多与学生沟通,了解他们已有的知识水平,认真备课。同时还要不断地学习,提高自己的业务水平和教育教学能力。 分数与除法教学反思篇4 今天的教学与分数意义的学习在孩子们头脑中产生了强烈的矛盾冲突。前几天的分数都表示谁占谁的几分之几
12、(即分率),可今天求的却是具体数量。特别是例2,虽然运用学具让所有学生参与到知识的探索过程中,但仍旧感觉推进艰难。学生困惑点主要在以下两方面: 1、为什么把3块月饼看作单位“1”,平均分成4份,取其中1份不是1/4? 2、通过操作,结果明明是将单位“1”平均分成12块,取出其中的3块,为什么不能用3/12块表示呢? 针对上述两个问题,我在教学中主要采取了以下一些策略: 1、复习环节巧铺垫。 在复习导入中增加一道用分数表示阴影部分的练习。其中一幅图是圆的3/4,另一幅图是圆的3/12。这样,当学生困惑于例题3/4块和3/12块结果时,就能通过直观图,前后呼应,使学生豁然开朗。 2、审题过程藏玄机
13、。 在教学例2请学生读题后,首先请学生思考“3块月饼4人平均分,每人能得到一整块月饼吗?”然后用语言暗示“每人分不到一块月饼,那到底能分得一块月饼的几分之几呢?请同学们用圆形纸片代替月饼,实际动手分一分,看看分得多少块?”有了每人分不到一块月饼的提示,又有了“到底能分得一块月饼的几分之几”的暗示,学生探索的落脚点定位到了以一块月饼为单位“1”,且初步理解了问题是求数量“块”而非部分与整体之间的关系。 通过上述改进措施,学生理解3/4相对容易一些。 分数与除法教学反思篇5 一、问题展示 在分数除法这一单元中,主要展示的是分数除以整数、整数除以分数、分数除以分数这三种类型的计算方法,其中,在分数除
14、以整数的教学过程中,学生接受得比较快,学习效果也很好,但是在教学整数除以分数后,通过学生的练习反馈,发现学生在计算中出错比较多,主要表现在一下几方面: 1.在除号与除数的同步变化中,学生忘记将除号变成乘号。 2.在除数变成其倒数的时候,学生误将被除数也变成了倒数。 3.计算时约分的没有及时约分,导致答案不准确。 二、原因分析 为什么会形成这些错误现象,通过对比分析,可能有一下原因: 1.教学方法上:例题讲解分量不够;教学语速较快;学困生板演机会不够多;讲得多、板书方面写得少。 2.学生学法上:受分数除以整数的教学影响,形成了思维定势,以为每次都是分数要变成倒数,整数不变,从而导致同步变化出现错
15、误;其次,学生听课过程中不善于抓重点,在分数除法中,被除数是不能变的,同步变化指的是除号和除数的变化;最后,学生的学习态度和学习习惯也直接影响了本科的教学效果。 三、解决办法 1.增加学生板演的机会, 2.课堂上,对于关键性的词语,要求学生齐读,用以加深印象。 3.辅差工作要求学生以同位为单位,进行个别辅导。 分数与除法教学反思篇6 “数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。使学生认识学习数学的重要性,提高学习数学的兴趣”.分数与除法,对于小学生来说,是一个比较抽象的内容。而在小学阶段数学知识之所以能被学生理解和掌握,绝不仅仅是知识演绎的结
16、果,而是具体的模型、图形、情景等知识相互作用的结果。所以我在设计分数与除法这一课时,从以下两方面考虑: 1.以解决问题入手,感受分数的价值。 从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。 2.分数意义的拓展与除法之间关系的理解同步。 当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可
17、以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。 教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。整节课教学有以下特点: 1.提供丰富的素材,经历“数学化”过程。 分数与除法关系的理解,是以具体可感的实物、图片为媒介,用动手操作为方式,在丰富的表象的支撑下生成数学知识,是一个不断丰富感性积累,并逐步抽象、建模的过程。在这个过程中,关注了以下几个方面:一是提供丰富数学学习材料,二是
18、在充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。 2.问题寓于方法,内容承载思想。 数学学习是一个问题解决的过程,方法自然就寓于其中;学习内容则承载着数学思想。也就是说,数学知识本身仅仅是我们学习数学的一方面,更为重要的是以知识为载体渗透数学思想方法。 就分数与除法而言,笔者以为如果仅仅为得出一个关系式而进行教学,仅仅是抓住了冰山一角而已。实际上,借助于这个知识载体,我们还要关注蕴藏其中的归纳、比较等思想方法,以及如何运用已有知识解决问题的方法,从而提高学生的数学素
19、养。 分数与除法教学反思篇7 一、教学内容:分数与除法,教材第65、66页例1和例2 二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。 2.使学生掌握分数与除法的关系。 三、重点难点:1.理解、归纳分数与除法的关系。 2.用除法的意义理解分数的意义。 四、教具准备:圆片、多媒体课件。 五、教学过程: (一)复习 把6块饼平均分给2个同学,每人几块?板书:623(块) (二)导入 (2)把1块饼平均分给2个同学,每人几块?板书:120.5(块) (三)教学实施 1.学习教材第65 页的例1 。 (1)如果把1块饼平均分给3个同学,每人又该得到几块呢?130.3(块) (2)1除以3
20、除不尽,结果除了用循环小数,还可以用什么表示? 通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当13得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。 ( 3)指名让学生把思路告诉大家。 就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。 老师根据学生回答。(板书:1 3 =块) (4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的? 通过这样的练习,为下面的操作打下基础。 2.观察上面三道算式结果得出:两数相除,结果不仅可以
21、用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法 3.学习例2 。 ( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 4)( 2 )3 4 的计算结果用分数表示是多少?请同学们用圆片分一分。 老师:根据题意,我们可以把什么看作单位“1 ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。 通过演示发现学生有两种分法。 方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个,3 个饼共得到12个, 平均分给4 个学生。每个学生分得3个,合在一起是块饼。 方法二:可以把3 块饼叠在一起,再平均分成4 份
22、,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。 讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。) 两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。 ( 3 )加深理解。(课件演示) 老师:块饼表示什么意思: 把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。 把3块饼叠在一块分,分了一次,每人分得3块,就是块。 现在不看单位名称,再来说说表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。) ( 4 )巩固理解 如果把2块饼平均分给
23、3个人,每人应该分得多少块? 23=(块) 刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理) 从刚才的研究分析,你能直接计算79的结果吗?() 借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。 4.归纳分数与除法的关系。 ( l )观察讨论。 请学生观察13 = (块)34 =(块)讨论除法和分数有怎样的关系? 学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格) 用文字表示
24、是:被除数除数= 老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。 ( 2 )思考。 在被除数除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。) ( 3 )用字母表示分数与除法的关系。 老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢? 老师依据学生的总结板书:ab = (b0) 明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。) 5.巩固练习: (1)口答: 713 ( )( ) ( )24
25、 99 0.53 nm(m0) 1米的等于3米的( ) 把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。 解释0.53= 是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。 (2)明辨是非 一堆苹果分成10份,每份是这堆苹果的 ( ) 1米的与3米的一样长。( ) 一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的。( ) 把45个作业本平均分给15个同学,每个同学分得45本的 。()(3)动脑筋想一想 把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米? (用分数表示) 小明用45分钟走了3千米,平均每分钟走
26、了多少千米?每千米需要多少时间? 教学反思: 教材分析:本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。 设计意图: 1直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数
27、的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。 2培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。 3注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0.53=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。 第 28 页 共 28 页
限制150内