适用于白银市月度售电量预测的模型构建,电气工程硕士论文.docx
《适用于白银市月度售电量预测的模型构建,电气工程硕士论文.docx》由会员分享,可在线阅读,更多相关《适用于白银市月度售电量预测的模型构建,电气工程硕士论文.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、适用于白银市月度售电量预测的模型构建,电气工程硕士论文售电量是电网企业经营管理的重要经济指标,也是售电均价、财务收入、电网投资预算等一系列指标计算的基础数据。由于售电量遭到众多复杂因素影响,很难找到一种 放之四海 皆准的预测方式方法,既合适于任何地区又适用于各种情况。当前,关于售电量预测的研究有很多,常用的预测方式方法主要有灰色预测法和时间序列法两大类,但是这些方式方法在不同地区、不同售电构造和不同的用电负荷特性的售电量预测中存在一定的局限性。本文旨在研究适用于白银市月度售电量预测的模型,提高预测准确度,知足企业工作需要。 结合白银市用电负荷特性,本文根据用电性质、执行电价和国民经济行业对白银
2、市用电负荷进行分类,分析售电量变化规律。在这里基础上构建了五种数学模型,通过分析比对仿真预测结果,选取灰色预测和人工神经网络组合方式作为基础预测模型,采用差分进化算法对灰色神经网络预测模型网络参数进行了优化,并将气象因素作为影响因子不断修正预测模型。 为进一步提高预测模型的精度,充分考虑当地用电负荷构造特点,将K-means聚类算法应用到白银市负荷聚类中,将七类负荷聚为三类。在MATLAB平台上建立了白银市月度售电量预测模型,采用聚类后的售电量作为训练数据,通过与聚类前的预测结果进行比照,结果证明基于数据聚类的差分灰色神经网络预测模型,能够进一步提高该市月度售电量预测的精度。 本文关键词语:
3、售电量预测;灰色神经网络;差分优化;聚类算法。 Abstract Electricity sales is an important economic indicator for th e operation and management of Power Grid Enterprises, it is also the basic data of a series of index calculation such as average price of selling electricity, financial income, investment budget of power gri
4、d, etc. . Electricity sales are affected by many complicated factors, it is hard to find a one-size-fits-all approach to forecasting, which is suitable for the load characteristics of different regions, scholars at home and abroad have paid much attention to it. At present, There are many researches
5、 on the forecasting of electricity sales,the commonly forecasting methods are Grey prediction method and time series method. However, these methods have some limitations in different areas, different distribution structures and different load characteristics. The purpose of this essay is to develop
6、a method suitable for forecasting the monthly electricity sales in Baiyin to improve the accuracy of forecasting and meet the needs of enterprises. Combined with the characteristics of electric load in Baiyin, in this essay, the Baiyin Electricity load is classified according to the nature of electr
7、icity consumption, the implementation price and the national economy industry.On this basis, five mathematical models are constructed.By analyzing and comparing the emulat ion prediction results, the combination of grey prediction and artificial neural network is selected as the basic prediction mod
8、el .The parameters of grey neural network prediction model are optimized by using differential evolution algorithm, the forecast model is modified continuously by taking meteorological factors as influencing factors. In order to improve the accuracy of the prediction model ,this essay combines the c
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 文化交流
限制150内