数学建模matlab课件9、10、矩阵.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《数学建模matlab课件9、10、矩阵.ppt》由会员分享,可在线阅读,更多相关《数学建模matlab课件9、10、矩阵.ppt(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、矩阵及其运算0、一般矩阵的输入直接输入需遵循以下直接输入需遵循以下基本规则基本规则:整个矩阵应以整个矩阵应以“”为首尾,即整个输入矩阵必须包为首尾,即整个输入矩阵必须包含在方括号中;含在方括号中;矩阵中,行与行之间必须用分号矩阵中,行与行之间必须用分号“;”或或 Enter 键(键(按按 Enter 键)符分隔;键)符分隔;每行中的元素用逗号每行中的元素用逗号“,”或或空格空格分隔;分隔;A=1,2,3,4;5,6,7,8;9,10,11,12;13,14,15,16A=12345678910111213141516一、特殊矩阵的实现1.零零矩矩阵阵:所有元素值为零的矩阵称为零矩阵。零矩阵可以
2、用zeros函数实现。zeros是MATLAB内部函数,使用格式如下:zeros(m):产生mm阶零矩阵;zeros(m,n):产生mn阶零矩阵,当m=n时等同于zeros(m);zeros(size(A):产生与矩阵A同样大小的零矩阵。一、特殊矩阵的实现常见的特殊矩阵有零矩阵、幺矩阵、单位矩阵、三角形矩阵等,这类特殊矩阵在线性代数中具有通用性;还有一类特殊矩阵在专门学科中有用,如有名的希尔伯特(Hilbert)矩阵、范德蒙(Vandermonde)矩阵等。2.幺矩阵幺矩阵:所有元素值为1的矩阵称为幺矩阵。幺矩阵可以用ones函数实现。它的调用格式与zeros函数一样。【例例1 1】试用one
3、s分别建立32阶幺矩阵、和与前例矩阵A同样大小的幺矩阵。用ones(3,2)建立一个32阶幺阵:ones(3,2)%一个32阶幺阵ans=1 1 1 1 1 1一、特殊矩阵的实现3.单单位位矩矩阵阵:主对角线的元素值为1、其余元素值为0的矩阵称为单位矩阵。它可以用MATLAB内部函数eye建立,使用格式与zeros相同。4.数数量量矩矩阵阵:主对角线的元素值为一常数d、其余元素值为0的矩阵称为数量矩阵。显然,当d=1时,即为单位矩阵,故数量矩阵可以用eye(m)*d或eye(m,n)*d建立。一、特殊矩阵的实现5.对对角角阵阵:对角线的元素值为常数、其余元素值为0的矩阵称为对角阵。我们可以通过
4、MATLAB内部函数diag,利用一个向量构成对角阵;或从矩阵中提取某对角线构成一个向量。使用格式为diag(V)和diag(V,k)两种。6.用一个向量V构成一个对角阵设V为具有m个元素的向量,diag(V)将产生一个mm阶对角阵,其主对角线的元素值即为向量的元素值;diag(V,k)将产生一个nn(n=m+|k|,k为一整数)阶对角阵,其第k条对角线的元素值即为向量的元素值。注意:当k0,则该对角线位于主对角线的上方第k条;当k0,该对角线位于主对角线的下方第|k|条;当k=0,则等同于diag(V)。用diag建立的对角阵必是方阵。一、特殊矩阵的实现【例例2 2】已知向量v,试建立以向量
5、v作为主对角线的对角阵A;建立分别以向量v作为主对角线两侧的对角线的对角阵B和C。MATLAB程序如下:v=1;2;3;%建立一个已知的向量AA=diag(v)A=1 0 0 0 2 0 0 0 3B=diag(v,1)B=0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0C=diag(v,-1)C=0 0 0 0 1 0 0 0 0 2 0 0 0 0 3 0%按各种对角线情况构成相应的对角阵A、B和C一、特殊矩阵的实现7.从矩阵中提取某对角线我们也可以用diag从矩阵中提取某对角线构成一个向量。设A为mn阶矩阵,diag(A)将从矩阵A中提取其主对角线产生一个具有min(m,n
6、)个元素的向量。diag(A,k)的功能是:当k0,则将从矩阵A中提取位于主对角线的上方第k条对角线构成一个具有n-k个元素的向量;当k0,则将从矩阵A中提取位于主对角线的下方第|k|条对角线构成一个具有m+k个元素的向量;当k=0,则等同于diag(A)。一、特殊矩阵的实现【例例3 3】已知矩阵A,试从矩阵A分别提取主对角线及它两侧的对角线构成向量B、C和D。MATLAB程序如下:A=1 2 3;4 5 6;%建立一个已知的23阶矩阵A%按各种对角线情况构成向量B、C和DB=diag(A)B=1 5C=diag(A,1)C=2 6D=diag(A,-1)D=4一、特殊矩阵的实现8.上三角阵:
7、使用格式为triu(A)、triu(A,k)设A为mn阶矩阵,triu(A)将从矩阵A中提取主对角线之上的上三角部分构成一个mn阶上三角阵;triu(A,k)将从矩阵A中提取主对角线第|k|条对角线之上的上三角部分构成一个mn阶上三角阵。注意:这里的k与diag(A,k)的用法类似,当k0,则该对角线位于主对角线的上方第k条;当k0,该对角线位于主对角线的下方第|k|条;当k=0,则等同于triu(A)一、特殊矩阵的实现【例例4 4】试分别用triu(A)、triu(A,1)和、triu(A,-1)从矩阵A提取相应的上三角部分构成上三角阵B、C和D。MATLAB程序如下:A=1 2 3;4 5
8、 6;7 8 9;9 8 7;%一个已知的43阶矩阵A%构成各种情况的上三角阵B、C和DB=triu(A)B=1 2 3 0 5 6 0 0 9 0 0 0C=triu(A,1)D=triu(A,-1)一、特殊矩阵的实现9.下三角阵:使用格式为tril(A)、tril(A,k)tril的功能是从矩阵A中提取下三角部分构成下三角阵。用法与triu相同。10.空矩阵空矩阵在MATLAB里,把行数、列数为零的矩阵定义为空矩阵。空矩阵在数学意义上讲是空的,但在MATLAB里确是很有用的。例如A=0.1 0.2 0.3;0.4 0.5 0.6;B=find(A1.0)B=这里是空矩阵的符号,B=find
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 matlab 课件 10 矩阵
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内