空间几何体的结构经典.pptx
《空间几何体的结构经典.pptx》由会员分享,可在线阅读,更多相关《空间几何体的结构经典.pptx(54页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第1页/共54页第2页/共54页空间几何体的定义:空间几何体的定义:如果只考虑物体的形状和大小,而不考虑其它因素,那么这些由物体抽象出来的空间图形就叫做空间几何体第3页/共54页观察与思考由若干平面多边形围成的几何体叫做多面体第4页/共54页2、多面体若干个平面多边形围成的几何体,叫多面体.围成多面体的各个多边形叫多面体的面;相邻两个面的公共边叫多面体的棱;棱和棱的公共点叫多面体的顶点;第5页/共54页多面体的定义:(1)(1)定义:由若干个平面多边形围成的空间图形叫做多面体 (2)(2)多面体的面:多面体的棱:多面体的顶点:多面体的对角线:围成多面体的各个多边形两个面的公共边棱和棱的公共点不
2、在同一面上的两个顶点的连线段(3)(3)多面体的分类:凸多面体非凸多面体多面体四面体多面体五面体六面体第6页/共54页观察与思考 观察下列物体的形状和大小,试给出相应的空间几何体,说说有它们的共同特征。由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体形成第7页/共54页多面体旋转体由若干个平面多边形围成的几何体由一个平面图形绕它所在平面内的一条直线旋转所形成的封闭几何体顶点面棱旋转轴第8页/共54页空间几何体的分类:1.多面体:由若干平面多边形围成的几何体2.旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体空间几何体的定义:如果只考虑物体的形状
3、和大小,而不考虑其它因素,那么这些由物体抽象出来的空间图形就叫做空间几何体归纳小结第9页/共54页请仔细观察下列几何体,说说它们的共同特点.注意观察几何体的每个面的特点,以及面与面之间的关系第10页/共54页DABCEFFAEDBC1、定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。侧棱侧面底面顶点相邻侧面的公共边叫做棱柱的侧棱。侧面与底的公共顶点叫做棱柱的顶点。两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。第11页/共54页DABCEFFAEDBC侧棱侧面底面顶点思考:倾斜后的几何体还是柱体吗?(1 1)底面互相
4、平行。)底面互相平行。(2 2)侧面是平行四边形。)侧面是平行四边形。(3 3)侧棱平行且相等第12页/共54页棱柱的表示:用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDE-A1B1C1D1E1。DABCEFFAEDBC第13页/共54页棱柱的分类 棱柱的底面可以是三角形、四边形、五边形我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱1.侧棱不垂直于底的棱柱叫做斜棱柱。2.侧棱垂直于底的棱柱叫做直棱柱。3.底面是正多边形的直棱柱叫做正棱柱。第14页/共54页 过过BCBC的截面截去长方体的一角,的截面截去长方体的一角,截去的几何体是不是棱柱,余下的几截去的几何体是不是棱柱,余下的几何体是不
5、是棱柱?何体是不是棱柱?理解棱柱的定义理解棱柱的定义 答:都是棱柱答:都是棱柱第15页/共54页理解棱柱的定义理解棱柱的定义 观察右边的棱柱,观察右边的棱柱,共有多少对平共有多少对平行平面?能作为棱柱的底面的有几对行平面?能作为棱柱的底面的有几对?答:四对平行平面;只有一对可以作为棱柱的底答:四对平行平面;只有一对可以作为棱柱的底面面第16页/共54页理解棱柱的定义理解棱柱的定义 为什么定义中要说为什么定义中要说“其余各面都是其余各面都是四边形,并且相邻两个四边形的公共边四边形,并且相邻两个四边形的公共边都互相平行,都互相平行,”而不简单的只说而不简单的只说“其余其余各面是平行四边形呢各面是平
6、行四边形呢”?答:满足答:满足“有两个面互相平行,其有两个面互相平行,其余各面都是平行四边形的几何体余各面都是平行四边形的几何体”这样这样说法的还有右图情况,如图所示所以说法的还有右图情况,如图所示所以定义中不能简单描述成定义中不能简单描述成“其余各面都是其余各面都是平行四边形平行四边形”第17页/共54页课堂练习:1.下面的几何体中,哪些是棱柱?第18页/共54页请仔细观察下列几何体,说说它们的共同特点.第19页/共54页棱锥的结构特征棱锥的结构特征第20页/共54页SABCD顶点侧面侧棱底面 有一个面是多边形,其余各面都是有一个公共顶点的三角形所围成的几何体叫棱锥棱锥的结构特征棱锥的结构特
7、征棱锥棱锥 如何描述下图的几何结构特征?如何描述下图的几何结构特征?第21页/共54页棱锥的底面棱锥的底面棱锥的侧面棱锥的侧面棱锥的顶点棱锥的顶点棱锥的侧棱棱锥的侧棱SABCDE第22页/共54页棱锥的分类棱锥的分类:按底面多边形的边数,可以分为三棱锥、四棱锥、五棱锥、ABCDS棱锥的表示方法:棱锥的表示方法:用表示顶点和底面的字母表示,如四棱锥S-ABCD。第23页/共54页正棱锥 如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥是正棱锥.OSABCDE正棱锥的基本性质正棱锥的基本性质 各侧棱相等,各侧面 是全等的等腰三角形,各等腰 三角形底边上的高相等(它叫做正棱
8、锥的斜高)。第24页/共54页 用一个平行于棱锥底面的平面去截棱锥用一个平行于棱锥底面的平面去截棱锥,得到怎样的两个几何体得到怎样的两个几何体?想一想:第25页/共54页B B1 1A A1 1C C1 1D D1 1C C1 1 B B1 1A A1 1D D1 1侧侧棱棱侧侧面面下底面下底面顶顶点点上底面上底面第26页/共54页1、棱台的概念:、棱台的概念:用一个平行于棱锥底面用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分的平面去截棱锥,底面和截面之间的部分叫做棱台。叫做棱台。C C1 1 B B1 1A A1 1D D1 1上底面下底面侧面侧棱顶点第27页/共54页2.2.棱台
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 几何体 结构 经典
限制150内