概率论与数理统计浙大四版第二章2讲.ppt
《概率论与数理统计浙大四版第二章2讲.ppt》由会员分享,可在线阅读,更多相关《概率论与数理统计浙大四版第二章2讲.ppt(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、离散型随机变量离散型随机变量 设设X是是一一个个离离散散型型随随机机变变量量,它它可可能能取取的值是的值是 x1,x2,.为了描述随机变量为了描述随机变量 X,我们不仅需,我们不仅需要知道随机变量要知道随机变量X的取值,而且还应知道的取值,而且还应知道X取每个值的概率取每个值的概率.这样,我们就掌握了这样,我们就掌握了X这个这个随机变量取值的概率规律随机变量取值的概率规律.从中任取从中任取3 个球个球取到的白球数取到的白球数X是一个随机变量是一个随机变量X可能取的值是可能取的值是0,1,2取每个值的概率为取每个值的概率为例例1且且一、离散型随机变量概率分布的定义一、离散型随机变量概率分布的定义
2、一般地,我们给出如下定义一般地,我们给出如下定义:其中其中 (k=1,2,)满足:满足:k=1,2,(1)(2)定定义义1:设设xk(k=1,2,)是是离离散散型型随随机变量机变量X所取的一切可能值,称所取的一切可能值,称 k=1,2,为为离离散散型型随随机机变变量量X的的概概率率函函数数或或分分布布律,也称概率分布律,也称概率分布.用这两条性质判断用这两条性质判断一个函数是否是一个函数是否是概率函数概率函数解解:依据概率函数的性质依据概率函数的性质:P(X=k)0,a0从中解得从中解得欲使上述函数为概率函数欲使上述函数为概率函数应有应有这里用到了常见的这里用到了常见的幂级数展开式幂级数展开式
3、例例2.设随机变量设随机变量X的概率函数为:的概率函数为:k=0,1,2,试确定常数试确定常数a.二、表示方法二、表示方法(1)列表法:)列表法:(2)图示法)图示法(3)公式法)公式法X再看例再看例1任取任取3 个球个球X为取到的白球数为取到的白球数X可能取的值可能取的值是是0,1,20.10.30.6kPK012三、举例三、举例例例3.某篮球运动员投中篮圈概率是某篮球运动员投中篮圈概率是0.9,求,求他两次独立投篮投中次数他两次独立投篮投中次数X的概率分布的概率分布.解:解:X可取可取0、1、2为值为值 P(X=0)=(0.1)(0.1)=0.01 P(X=1)=2(0.9)(0.1)=0
4、.18 P(X=2)=(0.9)(0.9)=0.81 且且 P(X=0)+P(X=1)+P(X=2)=1常常表示为:常常表示为:这就是这就是X的概率分布的概率分布.例例4.某某射射手手连连续续向向一一目目标标射射击击,直直到到命命中中为为止止,已已知知他他每每发发命命中中的的概概率率是是p,求求所所需需射射击击发数发数X 的概率函数的概率函数.解解:显然,显然,X 可能取的值是可能取的值是1,2,,P(X=1)=P(A1)=p,为计算为计算 P(X=k),k=1,2,,Ak=第第k发命中发命中,k=1,2,,设设于是于是可见可见这就是求这就是求所需射击发数所需射击发数X的概率函数的概率函数.P
5、(X=1)=P(A1)=p,Ak=第第k发命中发命中,k=1,2,,设设于是于是 若若随随机机变变量量X的的概概率率函函数数如如上上式式,则则称称X具有具有几何分布几何分布.不难验证不难验证:例例5.一一汽汽车车沿沿一一街街道道行行驶驶,需需要要通通过过三三个个均均设设有有红红绿绿信信号号灯灯的的路路口口,每每个个信信号号灯灯为为红红或或绿绿与与其其它它信信号号灯灯为为红红或或绿绿相相互互独独立立,且且红红绿绿两两种种信信号号灯灯显显示示的的时时间间相相等等.以以X表表示示该该汽汽车车首首次次遇遇到到红红灯灯前前已已通通过过的的路路口口的的个个数数,求求X的的概概率率分分布布.解解:依题意依题
6、意,X可取值可取值0,1,2,3.P(X=0)=P(A1)=1/2,Ai=第第i个路口遇红灯个路口遇红灯,i=1,2,3设设路口路口1路口路口2路口路口3P(X=1)=P()=1/4 P(X=2)=P()=1/8X表示该汽车首次遇到红灯前已通过的路口的个数表示该汽车首次遇到红灯前已通过的路口的个数路口路口1路口路口2路口路口3路口路口1路口路口2路口路口3Ai=第第i个路口遇红灯个路口遇红灯,i=1,2,3设设=1/8P(X=3)=P()路口路口1路口路口2路口路口3即即不难看到不难看到X表示该汽车首次遇到红灯前已通过的路口的个数表示该汽车首次遇到红灯前已通过的路口的个数Ai=第第i个路口遇红
7、灯个路口遇红灯,i=1,2,3设设 解:每个分子的运动是解:每个分子的运动是相互独立的,在左边还相互独立的,在左边还是右边是等可能的是右边是等可能的,概概率都是率都是0.5.例例6.N个个可可以以辨辨认认的的分分子子,在在一一容容器器内内自自由由运运动动,如如今今从从中中隔隔开开,观观察察左左边边分分子子的的个个数数,试求其概率分布试求其概率分布.设左边分子的个数为设左边分子的个数为X,我们来求我们来求X取每个值的概率取每个值的概率.X可取可取0,1,N为值为值,设左边分子的个数为设左边分子的个数为X,P(X=k)=k=0,1,NX可取可取0,1,N为值为值,共共N个分子个分子某固定某固定k个
8、分子在左端,其余个分子在左端,其余N-k个分子在右端的概率是个分子在右端的概率是(0.5)k(0.5)N-k左端有左端有k个分子的所有情况数为个分子的所有情况数为从从N个不同元个不同元素中取素中取k个的组合,个的组合,即即 种种.于是于是 只要知道了随机变量的概率分布,就只要知道了随机变量的概率分布,就可以计算与该随机变量有关的事件的概率可以计算与该随机变量有关的事件的概率.P(X=k)k=0,1,N可以验证:可以验证:例例7.某加油站替公共汽车站代营出租汽车业某加油站替公共汽车站代营出租汽车业务,每出租一辆汽车,可从出租公司得到务,每出租一辆汽车,可从出租公司得到3元元.因代营业务,每天加油
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 浙大 第二
限制150内