微积分课后题答案.pdf
《微积分课后题答案.pdf》由会员分享,可在线阅读,更多相关《微积分课后题答案.pdf(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 微积分课后题答案 习题四 A 1 用积分公式直接求下列不定积分。(1)cxxxdxxxxdxxxxx22123233421829)49(149(2)cxxdxxxdxxxx21252123252)()1((3)cxxdxxxdxxxxarctan)113(1133322224(4)cxedxxexxln32)32((5)ceceedxedxexxxx5555555)3(53ln51)3(3ln1)3()3((6)ceceedxedxexxxxx)7(27ln1)7(7ln1)7(722222 2 用积分公式直接求下列不定积分。(1)cxxxdxxxxdxxxxdxxx212325212123
2、2223452)2()12()1((3)cxxdxxdxxxdxxxx2csc22csc2cot42sin2cos4cossin2cos222(5)cxedxxedxxexexxxxln)1()((6)cxdxxdxxxxxdxxxxxarcsin2112)1)(1(11)1111(2(7)cxxdxxxdxxxx414745432474)()11((9)cxeedxeedxeeeedxeexxxxxxxxxx2)1(1)1)(1(112223 3 用第一类换元法求下列不定积分:(1)ceceduexdedxexuuxx)((4)caeaecuudxudxaedxeaxxxxxx)(ln1ln
3、1)((5)cxuduxxdxdxxdx23arctan61161)23(1)23(3241)23(141942222(8)cxcuduuxdxxxdx21221222)21(2121141)21(2114121(10)cxcuuduxdxxdxxcos2cos2sin2sin2sin(11)ceceduexdedxxexuuxxsinsinsinsincos 5 用第二类换元法求不定积分:(3)dxxx31 解:令,6xt 则dttdx56 cxxxxcttttdttttdtttdtttdttttdxxx)1ln(6632)1ln2131(6)111(616)1(61661663232332
4、353(4)dxex1 解:令xet 1,则.12),1ln(22dtttdxtx 原式=ceeectttdtttdtttdtttxxx1111ln12)1ln()1ln(2)1(21)1(211(21112122222(6)dxxxxxln12 解:令,ln xt 则.,dtedxextt 原式cxxctedtteedteteeetttttttlnlnln112(9)dxxx229 解:令,sin3tx则.sincos3,sin32dtttdxtx 原式cxxcxsxxcttdttdtttdxttt3arcsin393arcsin3)3(133cot3)1(csc3sincos3sincos
5、sin132222222(11)224xxdx 解;令,1xt 则.12dttdx 原式cxxctttdt44414141222 6、用分步积分法求下列不定积分。(2)cxxecexeexdxexeexdxxeexdxeexdexdxexxxxxxxxxxxxxx)21(21412121212121212121222222222222222222222 (4)cxxxdxxxxxxxxdxxxdxxxxxdxxxxxddxxx)2ln2(ln112ln2ln11ln2ln1ln12ln1ln1ln11ln)ln(2222222222(5)cxxedxexdxexxexexdxexexdedxe
6、xxxxxxxxxx)cos(sin21sinsincossincossinsinsin(8)cxxxxdxxxxdxxxxxxdxxxdxxarctan22)1ln()111(2)1ln(12)1ln()1ln()1ln()1ln(222222222(10)cxxxxdxxxxxxxdxxxxxxdxxxxxxxxxdxxxxxdxxdxxxx11ln)1(21)1111(2111ln211111ln2)1111(211ln211ln211ln2211ln11ln2222222222 (13)cxxxdxxxxxxdxxxxddxxxlnln)ln(ln1ln)ln(lnlnlnlnln)l
7、n(lnlnlnlnlnln(14)cxecexexdeexdexdxexxxxxxx)1(222222(16)cxxxxxxddxxxxxxdxxxdxxdxxxxdxxx22222222)(arctan21)1ln(21arctanarctanarctan1arctanarctan11arctanarctan111arctan1 习题 4(B)1.求下列不定积分(1)2221001001001001 11(1)(1)(1)(1)xxxdxdxxdxxxx 9899100(1)2(1)(1)xxxdx 979899111(1)(1)(1)974999xxxC(2)32636321133610
8、610610dxdtxdxxxxxtt 令3tx 22363113(3)11ln(3)(3)131ln(3610)3dttttCxxxC (3)222(2)ln(244)44(2)8dxd xxxxCxxx(4)22222212112(1)2(1ln|1|2211xttdxdttdttttxtt 令1tx 2ln|1|)ttC(1)ln(1)x xxxC(5)2222(2)(2)(2)xxxxxxxxxdxdedeedeeeeee 2111(1)1ln(1)1xxxxxxdeeexeCe(6)2ln(2)ln(2)xxxxxeedxdeee1ln(2)xxede ln(2)1(2)xxxxxe
9、deeee ln(2)11122xxxxxedeeee ln(2)1ln(2)22xxxexeCe (7)arcsinarcsin2arcsin1xxxedxxedxxarcsin xxde arcsinarcsinarcsin2arcsinarcsin2arcsinarcsin2111xxxxxxxxeedxxex dexxex eedxx arcsin2arcsin21(1)21xxxedxxxeCx(8)2222211()(1)(1)1xxxxxxxxdxdedeeeeeee 1arctanxxeCe 2(1)sincos()()sincossincosxxF xG xdxdxxxxx
10、sincossincosxxdxxCxx (2)sincos(sincos)()()sincossincosxxdxxF xG xdxxxxx ln|sincos|xxC(3)sin(sincos)cos()sincossincosxxxxF xdxdxxxxx (sincos)(cossin)sinsincossincosdxxxxxdxxxxx sinln|sincos|sincosxxxxdxxx 1()(ln|sincos|)2F xxxxC cos(cossin)sin()sincossincosxxxxG xdxdxxxxx (sincos)(sincos)cossincossin
11、cosdxxxxxdxxxxx cosln|sincos|sincosxxxxdxxx 1()(ln|sincos|)2G xxxxC 3(1)222()sincos2sincoscossinsin()444dxdxdxG xxxxxx 2ln|tan()|228xC (2)2212sincossincos2sincos()2()sincossincosxxxxxxG xF xdxdxxxxx (sincos)cossinxx dxxxC (3)sincos1()()2()()sincos2xxF xdxG xF xG xxx 12(sincosln|tan()|)2228xxxC 4(1)令
12、 1tx,222211111|1dtdxdttx xttt arcsin|1arcsin|tCCx (2)令 21tx,222(1)(1)1dxtdtdttttx x 221 tx arctan tC 2arctan1xC (3)令11xtx,2111(1)11dxdxxdxx xxx xxx x 2221111xttxxt,22(1)1tdxdtx xt 2arctan tC 12arctan1xCx 5(1)令1,(0)txx时,32422421(0)11111dtdxt dtttxxttt 2222221(1)111(1)2211tdttdttt 32221 2(1)212 3ttC 3
13、2221111(1)3Cxx 22 33111(1)3xxCxx(2)令1,(0)txx时,32422421(0)11111dtdxt dtttxxttt 2222221(1)111(1)2211tdttdttt 32221 2(1)212 3ttC 3222322231 211(1)212 311(1)13CxxxxCxx 322234211(1)131dxxxCxxxx 习题五(A)3.根据定积分的几何意义,说明下列各式的正确性。(2)11112x dxxdx 解:11x dx表示图 1 中阴影部分的面积,它是图1 中第一象限面积的 2 倍,而第一象限阴影部分的面积可以表示为11xdx,1
14、1112x dxxdx。(4)2204x dx 解:2204x dx表示图 2 所示的四分之一圆的面积,故22201424x dx。4.根据定积分的性质,比较下列各组定积分值的 大小。(1)112300 x dxx dx与 解:因为01x,所以23xx(等号成立的x只有有限个),又因为23,xx是连续函数从而可积,由定积分的性质可知112300 x dxx dx。5.利用定积分的性质,估计下列定积分值。(2)5244I(1+sinx)dx 解:令25()1 sin,()2sincossin244f xx xfxxxx 则。令()0fx得12,2xx而353(),()2,()1,(),42242
15、ffff因此1()2f x,故52442(1+sinx)dx。(4)20sin xIdxx 解:令sin(),0,2xf xxx,则2cos(tan)()0 x xxfxx。令()0fx得120,2xx。因为()f x在20,上单调递减,所以min()2ff2,max0sinlim1xxfx,即202sin()112xf xdxx,。6.求下列函数的导数。(1)20sinxdt dtdx 解:220sinsin.xdt dtxdx(2)2xtxdedtdx 解:2221211().22xtxxxxxdedteexeedxx(3)331()sinxdtxtdtdx 解:3333111()sins
16、insinxxxdddtxtdtttdtxtdtdxdxdx3sinxx31sinxdtdt xdx()32321sin3sinsin3(coscos1).xxxxtdt xxxx 7.求下列极限。(1)0000000sinsinlimsinlimlim(1 cos)sin 01xxxxxxxxxxetdtexetdtexexx(2)0220222()()lim()limlim2()()().1xxxaaaxaxaxaxf t dtx f xxf t dtxf t dtx f xa f axa(4)00001221111lnln1ln111limlimlimlim1)2(1)2(1)44xxx
17、xxtxdtxtxxxxxx(.8.利用适当代换,证明下列各题。(2)若21ln()1xtf xdtt,证明1()()f xfx。证明:令11mttm则,从而11221121ln1ln1()()().111()xxmmf xdmdmfmmxm(3)若()f x在,a a上连续,证明()()0aaaaf x dxfx dx。证明:()()()()()aaaaaaaaf x dxfx dxf x dxfx dx()()()()()aaaaaaaafx dxtxf t dtf t dtf x dx 令()()()()()0aaaaaaaaf x dxfx dxf x dxf x dx原式。9.设()
18、f x连续,0 x,且220()(1)xf t dtxx,求(2)f。解:两边同时对x求导得:222()22(1)23f xxxxxxx,23()12f xx.令32(2)122xf,则。11.用牛顿莱布尼兹公式计算下列定积分。(2)33666222226221622(2222333xdxxd xd xx)()()。(4)222200022()211112(arctan)arctan044222281()2xdxxdxdxx(6)44443333212(1)1211()(1)(2)(1)(2)221xxdxdxdxdxxxxxxxx 443ln(2)ln(1)4ln2ln333xx(8)161
19、6161600009119(9)9999dxxxdxxd xxdxxx 332216161 2(9)12009 3xx(9)1011110012(1)10 xxxxxedxe dxe dxeee(10)22002sin(cos)cos00 xdxdxx (12)3334441112222arcsin2arcsin2arcsin(arcsin)(1)21()xdxdxxxdxxxxx 22223132742arcsin(arcsin)(arcsin)12221442x()12.用变量代换法计算下列定积分。(2)2233333214444secsin(cos)tan tansinsin1 cos1
20、dxtdttdtdtxtdtttttxx 3334441111(1 cos)1(1cos)()2 1 cos1 cos21 cos21 cosdtdtdtttt(-)cost 113(12)33ln(1 cos)ln(1 cos)ln22344tt (3)1122222222210001121 sin 2sin cos(sin2)2xx dxxx dx xtttdtt dt 220011 cos411cos4222 428tdttdt(6)233222244sectan32 sec cossectan21dxttxtdttdtttxx(7)101111 ln ()lnln(1)1 ln(1)l
21、n2111(1)1eexeedxdtxtdttteet ttt (9)2221002(1)2 12(3 1)01 ln11tettdxe dtdtxetxxett(11)222lnln2422200011tanlncos lncos (ln2)81tttteexxdxtxtdttdtee 令(12)320002sinsincossincossincossinxxdxxxdxxxdxxxdx 3101201024sin 2()33txtdttdtdt (13)21112222000011 ln(1)222121112xttedxxttdtdtdttttln2令()13.用分布积分法计算下列定积分
22、。(1)ln2ln2ln2000ln2ln2ln21 ln20022xxxxxxe dxxdexee dxe (2)22ln2ln2322000111 ln2224xxxx edxx edxxe dxln2(3)222222200011coscoscossin22xxxxIexdxxdex eexdx 22201111sincos2242440 xxex eexdxI .从而51.424eI 1(2)5Ie 。(5)21112222000121 1ln(1)ln(1)ln22011xxx dxxxxdxdxxx 1120011ln22ln221 arctanln22012dxdxxx(7)11
23、11111112lnlnln(ln)ln211eeeeeeex dxxdxxdxxxxdxxxdxxee 14.计算下列定积分。(1)1111121211100022111(21)2222txxxxttedxedxedxetdttde 10110ttt ee dt (2)11122222220001111111(11)lnlnln1121211(1)2xxxxxxxdxdxxxdxxxxxx 1111222222222200001 ln32ln31 1ln31ln311(1)2418181821xxdxdxdxdxxxxx 120ln31111ln31ln313ln3)8221182228dx
24、xx(4)2tan33233332000002tansec2secsec1sec1txtxxtxdxdtxdxxdxxxxt(dx)令32333000secsectantansectansec30Ixdxxdxxxxxdx 23333300002 3(sec1)sec2 3secsec2 3secxxdxxdxxdxIxdx 故:3013sec2Ixdx。又30secln sectanln(23)30 xdxxx 12 3ln(23)ln(23)2 3ln(23)2原式 22.求下列曲线围成的平面图形的面积。(1),0 xyeyex与;解:如图 3 所示,面积11lnln11eeeSydyy
25、ydy(3)22,4;yx yx 解:如图4所示,面积4422322111(4)18226Sdyy(y+4)-ydyy(4)1,2yyxxx与;解:如图 5 所示,面积2113()ln22Sxdxx(5)2,2yxyxyx与;解:如图 6 所示,面积122017(2)(2)6Sxx dxxxdx 23.求由抛物线243yxx 及其在点(0,3)和(3,0)处的切 线所围成的图形的面积。解:24 (0)4,(3)2yxyy 。(0,3)y=4x-3过点的切线为,过 点(3,0)的切线为26yx。当4326xx 时3,2x两切线的交点为3(,3)2。如图 7 所示,面积 33222302(43)(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 课后 答案
限制150内