生物化学简明教程第四版课后答案.pdf
《生物化学简明教程第四版课后答案.pdf》由会员分享,可在线阅读,更多相关《生物化学简明教程第四版课后答案.pdf(45页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、实用文档.1 绪论 1生物化学研究的对象和内容是什么?解答:生物化学主要研究:(1)生物机体的化学组成、生物分子的结构、性质及功能;(2)生物分子分解与合成及反应过程中的能量变化;(3)生物遗传信息的储存、传递和表达;(4)生物体新陈代谢的调节与控制。2你已经学过的课程中哪些内容与生物化学有关。提示:生物化学是生命科学的基础学科,注意从不同的角度,去理解并运用生物化学的知识。3说明生物分子的元素组成和分子组成有哪些相似的规侓。解答:生物大分子在元素组成上有相似的规侓性。碳、氢、氧、氮、磷、硫等 6 种是蛋白质、核酸、糖和脂的主要组成元素。碳原子具有特殊的成键性质,即碳原子最外层的 4个电子可使
2、碳与自身形成共价单键、共价双键和共价三键,碳还可与氮、氧和氢原子形成共价键。碳与被键合原子形成 4 个共价键的性质,使得碳骨架可形成线性、分支以及环状的多种多性的化合物。特殊的成键性质适应了生物大分子多样性的需要。氮、氧、硫、磷元素构成了生物分子碳骨架上的氨基(NH2)、羟基(OH)、羰基(CO)、羧基(COOH)、巯基(SH)、磷酸基(PO4)等功能基团。这些功能基团因氮、硫和磷有着可变的氧化数及氮和氧有着较强的电负性而与生命物质的许多关键作用密切相关。生物大分子在结构上也有着共同的规律性。生物大分子均由相同类型的构件通过一定的共价键聚合成链状,其主链骨架呈现周期性重复。构成蛋白质的构件是
3、20 种基本氨基酸。氨基酸之间通过肽键相连。肽链具有方向性(N 端C 端),蛋白质主链骨架呈“肽单位”重复;核酸的构件是核苷酸,核苷酸通过 3,5-磷酸二酯键相连,核酸链也具有方向性(5、3),核酸的主链骨架呈“磷酸-核糖(或脱氧核糖)”重复;构成脂质的构件是甘油、脂肪酸和胆碱,其非极性烃长链也是一种重复结构;构成多糖的构件是单糖,单糖间通过糖苷键相连,淀粉、纤维素、糖原的糖链骨架均呈葡萄糖基的重复。2 蛋白质化学 1用于测定蛋白质多肽链 N 端、C 端的常用方法有哪些?基本原理是什么?解答:(1)N-末端测定法:常采用2,4二硝基氟苯法、Edman 降解法、丹磺酰氯法。实用文档.2,4二硝基
4、氟苯(DNFB 或 FDNB)法:多肽或蛋白质的游离末端氨基与2,4二硝基氟苯(2,4DNFB)反应(Sanger 反应),生成 DNP多肽或 DNP蛋白质。由于 DNFB与氨基形成的键对酸水解远比肽键稳定,因此 DNP多肽经酸水解后,只有 N末端氨基酸为黄色 DNP氨基酸衍生物,其余的都是游离氨基酸。丹磺酰氯(DNS)法:多肽或蛋白质的游离末端氨基与与丹磺酰氯(DNSCl)反应生成 DNS多肽或 DNS蛋白质。由于 DNS 与氨基形成的键对酸水解远比肽键稳定,因此DNS多肽经酸水解后,只有 N末端氨基酸为强烈的荧光物质 DNS氨基酸,其余的都是游离氨基酸。苯异硫氰酸脂(PITC 或 Edma
5、n 降解)法:多肽或蛋白质的游离末端氨基与异硫氰酸苯酯(PITC)反应(Edman 反应),生成苯氨基硫甲酰多肽或蛋白质。在酸性有机溶剂中加热时,N末端的 PTC氨基酸发生环化,生成苯乙内酰硫脲的衍生物并从肽链上掉下来,除去 N末端氨基酸后剩下的肽链仍然是完整的。氨肽酶法:氨肽酶是一类肽链外切酶或叫外肽酶,能从多肽链的 N 端逐个地向里切。根据不同的反应时间测出酶水解释放的氨基酸种类和数量,按反应时间和残基释放量作动力学曲线,就能知道该蛋白质的 N 端残基序列。(2)C末端测定法:常采用肼解法、还原法、羧肽酶法。肼解法:蛋白质或多肽与无水肼加热发生肼解,反应中除 C 端氨基酸以游离形式存 在外
6、,其他氨基酸都转变为相应的氨基酸酰肼化物。还原法:肽链 C 端氨基酸可用硼氢化锂还原成相应的 氨基醇。肽链完全水解后,代表原来 C末端氨基酸的 氨基醇,可用层析法加以鉴别。羧肽酶法:是一类肽链外切酶,专一的从肽链的 C末端开始逐个降解,释放出游离的氨基酸。被释放的氨基酸数目与种类随反应时间的而变化。根据释放的氨基酸量(摩尔数)与反应时间的关系,便可以知道该肽链的 C末端氨基酸序列。2测得一种血红蛋白含铁 0.426%,计算其最低相对分子质量。一种纯酶按质量计算含亮氨酸 1.65%和异亮氨酸 2.48%,问其最低相对分子质量是多少?实用文档.3指出下面 pH 条件下,各蛋白质在电场中向哪个方向移
7、动,即正极,负极,还是保持原点?(1)胃蛋白酶(pI 1.0),在 pH 5.0;(2)血清清蛋白(pI 4.9),在 pH 6.0;(3)-脂蛋白(pI 5.8),在 pH 5.0 和 pH 9.0;解答:(1)胃蛋白酶 pI 1.0环境 pH 5.0,带负电荷,向正极移动;(2)血清清蛋白 pI 4.9环境 pH 6.0,带负电荷,向正极移动;(3)-脂蛋白 pI 5.8环境 pH 5.0,带正电荷,向负极移动;-脂蛋白 pI 5.8环境 pH 9.0,带负电荷,向正极移动。4何谓蛋白质的变性与沉淀?二者在本质上有何区别?解答:蛋白质变性的概念:天然蛋白质受物理或化学因素的影响后,使其失去
8、原有的生物活性,并伴随着物理化学性质的改变,这种作用称为蛋白质的变性。变性的本质:分子中各种次级键断裂,使其空间构象从紧密有序的状态变成松散无序的状态,一级结构不破坏。蛋白质变性后的表现:生物学活性消失;理化性质改变:溶解度下降,黏度增加,紫外吸收增加,侧链反应增强,对酶的作用敏感,易被水解。蛋白质由于带有电荷和水膜,因此在水溶液中形成稳定的胶体。如果在蛋白质溶液中加入适当的试剂,破坏了蛋白质的水膜或中和了蛋白质的电荷,则蛋白质胶体溶液就不稳定而出现沉淀现象。沉淀机理:破坏蛋白质的水化膜,中和表面的净电荷。蛋白质的沉淀可以分为两类:(1)可逆的沉淀:蛋白质的结构未发生显著的变化,除去引起沉淀的
9、因素,蛋白质仍能溶于原来的溶剂中,并保持天然性质。如盐析或低温下的乙醇(或丙酮)短时间作用蛋白质。(2)不可逆沉淀:蛋白质分子内部结构发生重大改变,蛋白质变性而沉淀,不再能溶实用文档.于原溶剂。如加热引起蛋白质沉淀,与重金属或某些酸类的反应都属于此类。蛋白质变性后,有时由于维持溶液稳定的条件仍然存在,并不析出。因此变性蛋白质并不一定都表现为沉淀,而沉淀的蛋白质也未必都已经变性。5下列试剂和酶常用于蛋白质化学的研究中:CNBr,异硫氰酸苯酯,丹磺酰氯,脲,6mol/L HCl-巯基乙醇,水合茚三酮,过甲酸,胰蛋白酶,胰凝乳蛋白酶,其中哪一个最适合完成以下各项任务?(1)测定小肽的氨基酸序列。(2
10、)鉴定肽的氨基末端残基。(3)不含二硫键的蛋白质的可逆变性。若有二硫键存在时还需加什么试剂?(4)在芳香族氨基酸残基羧基侧水解肽键。(5)在甲硫氨酸残基羧基侧水解肽键。(6)在赖氨酸和精氨酸残基侧水解肽键。解答:(1)异硫氰酸苯酯;(2)丹黄酰氯;(3)脲;-巯基乙醇还原二硫键;(4)胰凝乳蛋白酶;(5)CNBr;(6)胰蛋白酶。6由下列信息求八肽的序列。(1)酸水解得 Ala,Arg,Leu,Met,Phe,Thr,2Val。(2)Sanger 试剂处理得 DNP-Ala。(3)胰蛋白酶处理得 Ala,Arg,Thr 和 Leu,Met,Phe,2Val。当以 Sanger 试剂处理时分别得
11、到 DNP-Ala 和 DNP-Val。(4)溴化氰处理得 Ala,Arg,高丝氨酸内酯,Thr,2Val,和 Leu,Phe,当用 Sanger试剂处理时,分别得 DNP-Ala 和 DNP-Leu。解答:由(2)推出 N 末端为 Ala;由(3)推出 Val 位于 N 端第四,Arg 为第三,而Thr 为第二;溴化氰裂解,得出 N 端第六位是 Met,由于第七位是 Leu,所以 Phe 为第八;由(4),第五为 Val。所以八肽为:Ala-Thr-Arg-Val-Val-Met-Leu-Phe。7一个 螺旋片段含有 180 个氨基酸残基,该片段中有多少圈螺旋?计算该-螺旋片段的轴长。解答:
12、180/3.6=50 圈,500.54=27nm,该片段中含有 50 圈螺旋,其轴长为 27nm。8 当一种四肽与 FDNB 反应后,用 5.7mol/LHCl 水解得到 DNP-Val 及其他 3 种氨基酸;当这四肽用胰蛋白酶水解时发现两种碎片段;其中一片用 LiBH4(下标)还原后再进行酸水解,水解液内有氨基乙醇和一种在浓硫酸条件下能与乙醛酸反应产生紫(红)色产物的氨基酸。试问这四肽的一级结构是由哪几种氨基酸组成的?解答:(1)四肽与 FDNB 反应后,用 5.7mol/LHCl 水解得到 DNP-Val,证明 N 端为 Val。(2)LiBH4还原后再水解,水解液中有氨基乙醇,证明肽的
13、C 端为 Gly。(3)水解液中有在浓 H2SO4条件下能与乙醛酸反应产生紫红色产物的氨基酸,说明此实用文档.氨基酸为 Trp。说明 C 端为 GlyTrp(4)根据胰蛋白酶的专一性,得知 N 端片段为 ValArg(Lys),以(1)、(2)、(3)结果可知道四肽的顺序:NValArg(Lys)TrpGlyC。9概述测定蛋白质一级结构的基本步骤。解答:(1)测定蛋白质中氨基酸组成。(2)蛋白质的 N 端和 C 端的测定。(3)应用两种或两种以上不同的水解方法将所要测定的蛋白质肽链断裂,各自得到一系列大小不同的肽段。(4)分离提纯所产生的肽,并测定出它们的序列。(5)从有重叠结构的各个肽的序列
14、中推断出蛋白质中全部氨基酸排列顺序。如果蛋白质含有一条以上的肽链,则需先拆开成单个肽链再按上述原则确定其一级结构。如是含二硫键的蛋白质,也必须在测定其氨基酸排列顺序前,拆开二硫键,使肽链分开,并确定二硫键的位置。拆开二硫键可用过甲酸氧化,使胱氨酸部分氧化成两个半胱氨磺酸。3 核酸 1 电泳分离四种核苷酸时,通常将缓冲液调到什么 pH?此时它们是向哪极移动?移动的快慢顺序如何?将四种核苷酸吸附于阴离子交换柱上时,应将溶液调到什么 pH?如果用逐渐降低 pH 的洗脱液对阴离子交换树脂上的四种核苷酸进行洗脱分离,其洗脱顺序如何?为什么?解答:电泳分离 4 种核苷酸时应取 pH3.5 的缓冲液,在该
15、pH 时,这 4 种单核苷酸之间所带负电荷差异较大,它们都向正极移动,但移动的速度不同,依次 为:UMPGMPAMPCMP;应取 pH8.0,这样可使核苷酸带较多负电荷,利于吸附于阴离子交换树脂柱。虽然 pH 11.4 时核苷酸带有更多的负电荷,但 pH 过高对分离不利。当不考虑树脂的非极性吸附时,根据核苷酸负电荷的多少来决定洗脱速度,则洗脱顺序为CMPAMP GMP UMP,但实际上核苷酸和聚苯乙烯阴离子交换树脂之间存在着非极性吸附,嘌呤碱基的非极性吸附是嘧啶碱基的 3 倍。静电吸附与非极性吸附共同作用的结果使洗脱顺序为:CMP AMP UMP GMP。2为什么 DNA 不易被碱水解,而 R
16、NA 容易被碱水解?解答:因为 RNA 的核糖上有 2-OH 基,在碱作用下形成 2,3-环磷酸酯,继续水解产生 2-核苷酸和 3-核苷酸。DNA 的脱氧核糖上无 2-OH 基,不能形成碱水解的中间产物,故对碱有一定抗性。3一个双螺旋 DNA 分子中有一条链的成分A=0.30,G=0.24,请推测这一条链上的T和C的情况。互补链的A,G,T和C的情况。实用文档.解答:T+C=10.300.24=0.46;T=0.30,C=0.24,A+G=0.46。4对双链 DNA 而言,若一条链中(A+G)/(T+C)=0.7,则互补链中和整个 DNA 分子中(A+G)/(T+C)分别等于多少?若一条链中(
17、A+T)/(G+C)=0.7,则互补链中和整个DNA 分子中(A+T)/(G+C)分别等于多少?解答:设 DNA 的两条链分别为 和 则:A=T,T=A,G=C,C=G,因为:(A+G)/(T+C)=(T+C)/(A+G)=0.7,所以互补链中(A+G)/(T+C)=1/0.7=1.43;在整个 DNA 分子中,因为 A=T,G=C,所以,A+G=T+C,(A+G)/(T+C)=1;假设同(1),则 A+T=T+A,G+C=C+G,所以,(A+T)/(G+C)=(A+T)/(G+C)=0.7;在整个 DNA 分子中,(A+T+A+T)/(G+C+G+C)=2(A+T)/2(G+C)=0.7 5
18、T7 噬菌体 DNA(双链 B-DNA)的相对分子质量为 2.5107,计算 DNA 链的长度(设核苷酸对的平均相对分子质量为 640)。解答:0.34(2.5107/640)=1.3 104nm=13m。6如果人体有 1014个细胞,每个体细胞的 DNA 含量为 6.4 109个碱基对。试计算人体 DNA 的总长度是多少?是太阳地球之间距离(2.2 109 km)的多少倍?已知双链 DNA每 1000 个核苷酸重 1 10-18g,求人体 DNA 的总质量。解答:每个体细胞的 DNA 的总长度为:6.4 109 0.34nm=2.176 109 nm=2.176m,人体内所有体细胞的 DNA
19、 的总长度为:2.176m1014=2.1761011km,这个长度与太阳地球之间距离(2.2109 km)相比为:2.176 1011/2.2 109=99 倍,每个核苷酸重 1 10-18g/1000=10-21g,所以,总 DNA 6.4 1023 10-21=6.4 102=640g。7 有一个 X噬菌体突变体的 DNA 长度是 15m,而正常 X 噬菌体DNA 的长度为 17m,计算突变体 DNA 中丢失掉多少碱基对?解答:(1715)103/0.34=5.88 103bp 8概述超螺旋 DNA 的生物学意义。解答:超螺旋 DNA 比松弛型 DNA 更紧密,使 DNA 分子的体积更小
20、,得以包装在细胞内;超螺旋会影响双螺旋分子的解旋能力,从而影响到 DNA 与其他分子之间的相互作用;超螺旋有利于 DNA 的转录、复制及表达调控。9为什么自然界的超螺旋 DNA 多为负超螺旋?解答:环状 DNA 自身双螺旋的过度旋转或旋转不足都会导致超螺旋,这是因为超螺旋将使分子能够释放由于自身旋转带来的应力。双螺旋过度旋转导致正超螺旋,而旋转不足将导致负超螺旋。虽然两种超螺旋都能释放应力,但是负超螺旋时,如果发生 DNA 解链(即氢链断开,部分双螺旋分开)就能进一步释放应力,而 DNA 转录和复制需要解链。因此自然界环状 DNA 采取负超螺旋,这可以通过拓扑异构酶的操作实现。10真核生物基因
21、组和原核生物基因组各有哪些特点?实用文档.解答:不同点:真核生物 DNA 含量高,碱基对总数可达 10 11,且与组蛋白稳定结合形成染色体,具有多个复制起点。原核生物 DNA 含量低,不含组蛋白,称为类核体,只有一个复制起点。真核生物有多个呈线形的染色体;原核生物只有一条环形染色体。真核生物 DNA 中含有大量重复序列,原核生物细胞中无重复序列。真核生物中为蛋白质编码的大多数基因都含有内含子(有断裂基因);原核生物中不含内含子。真核生物的 RNA是细胞核内合成的,它必须运输穿过核膜到细胞质才能翻译,这样严格的空间间隔在原核生物内是不存在的。原核生物功能上密切相关的基因相互靠近,形成一个转录单位
22、,称操纵子,真核生物不存在操纵子。病毒基因组中普遍存在重叠基因,但近年发现这种情况在真核生物也不少见。相同点:都是由相同种类的核苷酸构成的的双螺旋结构,均是遗传信息的载体,均含有多个基因。11如何看待 RNA 功能的多样性?它的核心作用是什么?解答:RNA 的功能主要有:控制蛋白质合成;作用于 RNA 转录后加工与修饰;参与细胞功能的调节;生物催化与其他细胞持家功能;遗传信息的加工;可能是生物进化时比蛋白质和 DNA 更早出现的生物大分子。其核心作用是既可以作为信息分子又可以作为功能分子发挥作用。12什么是 DNA 变性?DNA 变性后理化性质有何变化?解答:DNA 双链转化成单链的过程称变性
23、。引起 DNA 变性的因素很多,如高温、超声波、强酸、强碱、有机溶剂和某些化学试剂(如尿素,酰胺)等都能引起变性。DNA 变性后的理化性质变化主要有:天然 DNA 分子的双螺旋结构解链变成单链的无规则线团,生物学活性丧失;天然的线型 DNA 分子直径与长度之比可达 110,其水溶液具有很大的黏度。变性后,发生了螺旋-线团转变,黏度显著降低;在氯化铯溶液中进行密度梯度离心,变性后的 DNA 浮力密度大大增加,故沉降系数 S 增加;DNA 变性后,碱基的有序堆积被破坏,碱基被暴露出来,因此,紫外吸收值明显增加,产生所谓增色效应。DNA 分子具旋光性,旋光方向为右旋。由于 DNA 分子的高度不对称性
24、,因此旋光性很强,其a=150。当 DNA 分子变性时,比旋光值就大大下降。13哪些因素影响 Tm值的大小?解答:影响 Tm的因素主要有:G-C 对含量。G-C 对含 3 个氢键,A-T 对含 2 个氢键,故 G-C 对相对含量愈高,Tm亦越高(图 3-29)。在 0.15mol/L NaCl,0.015mol/L 柠檬酸钠溶液(1SSC)中,经验公式为:(G+C)%=(Tm-69.3)2.44。溶液的离子强度。离子强度较低的介质中,Tm较低。在纯水中,DNA 在室温下即可变性。分子生物学研究工作中需核酸变性时,常采用离子强度较低的溶液。溶液的 pH。高 pH 下,碱基广泛去质子而丧失形成氢键
25、的有力,pH 大于 11.3 时,DNA 完全变性。pH 低于 5.0 时,DNA 易脱嘌呤,对单链DNA 进行电泳时,常在凝胶中加入 NaOH 以维持变性关态。变性剂。甲酰胺、尿素、甲醛等可破坏氢键,妨碍碱堆积,使 Tm下降。对单链 DNA 进行电泳时,常使用上述变性剂。实用文档.14哪些因素影响 DNA 复性的速度?解答:影响复性速度的因素主要有:复性的温度,复性时单链随机碰撞,不能形成碱基配对或只形成局部碱基配对时,在较高的温度下两链重又分离,经过多次试探性碰撞才能形成正确的互补区。所以,核酸复性时温度不宜过低,Tm-25是较合适的复性温度。单链片段的浓度,单链片段浓度越高,随机碰撞的频
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 生物化学 简明 教程 第四 课后 答案
限制150内