小升初数学常考应用题精心梳理.pdf
《小升初数学常考应用题精心梳理.pdf》由会员分享,可在线阅读,更多相关《小升初数学常考应用题精心梳理.pdf(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、小升初数学常考应用题精心梳理 一、整数和小数的应用(一)简单应用题 1、简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。2、解题步骤:a 审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述条件和问题,帮助理解题意。b 选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。C 检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错
2、误,马上改正。(二)复合应用题 1、有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。2、含有三个已知条件的两步计算的应用题。求比两个数的和多(少)几个数的应用题。比较两数差与倍数关系的应用题。3、含有两个已知条件的两步计算的应用题。已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。已知两数之和与其中一个数,求两个数相差多少(或倍数关系)。4、解答小数计算的应用题:小数计算的加法、减法、乘法和除法的应用题,他们的数量关系、结构、和解题方式都与正式应用题基本相同,只是在已知数或未知数中间含有小数。答案:根据计算的结果,先口答,逐步过渡到笔
3、答。5、解答加法应用题:a 求总数的应用题:已知甲数是多少,乙数是多少,求甲乙两数的和是多少。b 求比一个数多几的数应用题:已知甲数是多少和乙数比甲数多多少,求乙数是多少。6、解答减法应用题:a 求剩余的应用题:从已知数中去掉一部分,求剩下的部分。b 求两个数相差的多少的应用题:已知甲乙两数各是多少,求甲数比乙数多多少,或乙数比甲数少多少。c 求比一个数少几的数的应用题:已知甲数是多少,乙数比甲数少多少,求乙数是多少。7、解答乘法应用题:a 求相同加数和的应用题:已知相同的加数和相同加数的个数,求总数。b 求一个数的几倍是多少的应用题:已知一个数是多少,另一个数是它的几倍,求另一个数是多少。8
4、、解答除法应用题:a 把一个数平均分成几份,求每一份是多少的应用题:已知一个数和把这个数平均分成几份的,求每一份是多少。b 求一个数里包含几个另一个数的应用题:已知一个数和每份是多少,求可以分成几份。C 求一个数是另一个数的的几倍的应用题:已知甲数乙数各是多少,求较大数是较小数的几倍。d 已知一个数的几倍是多少,求这个数的应用题。9、常见的数量关系:总价=单价数量 路程=速度时间 工作总量=工作时间工效 总产量=单产量数量(三)典型应用题 具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。1、平均数问题:平均数是等分除法的发展。解题关键:在于确定总数量和与之相对应的总份数。
5、算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。数量关系式:数量之和数量的个数=算术平均数。加权平均数:已知两个以上若干份的平均数,求总平均数是多少。数量关系式(部分平均数权数)的总和(权数的和)=加权平均数。差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。数量关系式:(大数-小数)2=小数应得数 最大数与各数之差的和总份数=最大数应给数 最大数与个数之差的和总份数=最小数应得数。2、归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。根据求“单一量”的步骤的
6、多少,归一问题可以分为一次归一问题,两次归一问题。根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。”两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。数量关系式:单一量份数=总数量(正归一)总数量单一量=份数(反归一)例 一个织布工
7、人,在七月份织布 4774 米,照这样计算,织布 6930 米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量。693 0(477 4 31)=45(天)3、归总问题:是已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。特点:两种相关联的量,其中一种量变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。数量关系式:单位数量单位个数另一个单位数量=另一个单位数量 单位数量单位个数另一个单位数量=另一个单位数量。例:修一条水渠,原计划每天修 800 米,6 天修完。实际 4 天修完,每天修了多少米?分
8、析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”。不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。80 0 6 4=1200(米)4、和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。解题规律:(和+差)2=大数 大数-差=小数(和-差)2=小数 和-小数=大数 例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙班各有多少人?分析:
9、从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4-12,由此得到现在的乙班是(9 4-12)2=41(人),乙班在调出 46 人之前应该为 41+46=87(人),甲班为 9 4-87=7(人)5、和倍问题:已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。解题关键:找准标准数(即 1 倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。解题规律:和倍数和=标准数 标准数倍数=另一个数 例:汽车运输场有
10、大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与(5+1)倍对应,总车辆数应(115-7)辆。列式为(115-7)(5+1)=18(辆),18 5+7=97(辆)6、差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。解题规律:两个数的差(倍数-1)=标准数 标准数倍数=另一个数。例 甲乙两根绳子,甲绳长 63 米,乙绳长 29 米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米?各减去多少米?分析:两根
11、绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳多(3-1)倍,以乙绳的长度为标准数。列式(63-29)(3-1)=17(米)乙绳剩下的长度,17 3=51(米)甲绳剩下的长度,29-17=12(米)剪去的长度。7、行程问题:关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。解题关键及规律:同时同地相背而行:路程=速度和时间。同时相向而行:相遇时间=速度和时间 同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。同时同地同向而行
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小升初 数学 应用题 精心 梳理
限制150内