医学科研设计的基本原则.pdf
《医学科研设计的基本原则.pdf》由会员分享,可在线阅读,更多相关《医学科研设计的基本原则.pdf(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 医学科研设计的基本原则 LELE was finally revised on the morning of December 16,2020 第三章 医学科研设计的基本原则 医学科研设计是指对某一项医学研究的具体内容和方法的安排。作为科学研究,生物医学研究探索生物医学领域内未知事物和未知规律的科学活动,必须有科学的研究方法和合理的设计才能获得真实、可靠的研究结果。以人为主要研究对象的生物医学研究,由于研究对象的复杂性和特殊性,影响研究效应的因素很多、许多因素无法完全消除,因此对研究设计的要求就更高。如果研究设计存在缺陷(如样本代表性、可比性、混杂等),就可能影响研究结果的可靠性和研究价值。
2、另一方面,还要考虑研究对象(样本)的数量,样本量过少或过多都会对研究结果造成影响。一个缜密而完善的研究设计,能合理地安排各种研究因素,严格控制各种误差,用较少的人力、物力和时间,最大限度地获得足够而可靠的资料。合理的研究设计是顺利开展各种医学研究的前提条件,也是得到预期结果、达到事半功倍的保证。为了达到上述目的,在医学研究设计中必须遵循四项基本原则:随机化原则、对照原则、盲法原则和重复原则。第一节 随机化原则 随机化的核心是机会均等。随机化是医学研究中一项非常重要的原则。在医学研究中,随机化包括两方面的内容:随机化抽样和随机化分组。通过随机化选择研究对象,可以得到一个有代表性的样本。当存在未知
3、或不可控制的非处理因素时,随机化分组将研究对象随机分配到实验组和对照组之中,使这些非处理因素在实验组和对照组的分布一致。因此,随机化是实验性研究中保证组间均衡、可比的重要手段。一、随机化抽样 随机化抽样是指总体或目标人群中的每一个个体都有相同机会被抽中作为研究对象(样本)。在医学研究中,由于时间、人力、物力限制,通常不能把所有目标人群都作为研究对象,而只能选取其中一部分作为研究对象(样本)。对一组(或几组)研究对象(样本)进行调查或实验,获得原始数据,经过数据整理和统计分析得到样本信息(如均数、率等指标),并以样本的信息来推断总体人群的特征。要实现这一推断的前提条件是所采用的研究对象(样本)要
4、有代表性,即能代表目标人群。否则,就不能实现这一推断。获得一个有代表性样本的常用方法是采用随机化抽样来选择研究对象,即目标人群中每一个个体被选中的概率相等。这样获得的样本称为随机样本。“随机”不等于“随意”或“随便”。医学研究一般都需要推论,因此都需要采用随机化抽样的方法选择一组有代表性的研究对象。随机化抽样也是数据能统计分析和推断的前提。社会学、新闻传播学常用典型调查,其调查结果反映一部分(特殊人群)的特征,不能推论到普通人群。二、随机化抽样的常用方法 在医学研究中常见的随机化抽样方法有单纯随机化抽样、系统随机化抽样、分层随机化抽样、整群随机化抽样以及多阶段抽样随机化方法。(一)单纯随机化抽
5、样 也称为简单随机化抽样,一种最简单、最基本的抽样方法。其基本原理是从总体 N 个对象中,采用随机方法(如随机数字)抽取 n 个,构成一个样本。它的重要原则是总体中每个对象被抽到的概率相等(均为 n/N)。常见的随机方法有抽签或抓阄、掷骰子、掷硬币(50的概率)等;比较科学又方便的方法是用随机数字。随机数字表是根据概率论的原理编制的一种统计表,是获得随机数字的常用工具,见表 3-1。使用时是首先随机地确定所用表的起始行数、列数,然后逐行、逐列按次序连续选取若干随机数,其结果比抽签方法更理想。利用计算机数据库软件中的随机函数(RAND(X)和取整函数(INT(X))可以产生任意位数的随机数字。例
6、如利用公式 INT(RAND(x)100)+1 可以产生 1100 之间的随机数字。利用随机数字进行单纯随机抽样的基本步骤如下:1.确定目标人群的特征;2.将目标人群中的每个个体编号、排序;3.给每个个体分配一个随机数字;4.预先确定选择研究对象的方法。如欲抽取 50%的人群作为样本,则可以按照随机数字是偶数或奇数还确定;如欲选择 1/3 的人群,则可以把随机数字除以 3 后根据余数的情况选择;也可以根据随机数字的大小;5.根据随机数字选择研究对象。表 3-1 随机数字表 图 3-1 系统抽样示意图 单纯抽样方法适合在总体单位数不大,各个单位之间变异较小的情况下经常采用的抽样方法。如总体数量大
7、时,必须有所有单位的名单、编号,抽样过程比较麻烦。被抽到的个体比较分散,资料收集困难,可行性不大。如总体变异大,即使采用单纯随机抽样,获得样本的代表性也不一定好。单纯随机抽样的标准误按资料性质可用公式 3-1 和 3-2 计算。均数的标准误:nsNnSX2)1((3-1)率的标准误:1)1()1(nppNnSp (3-2)上式中 s 为样本标准差,p 为样本率,N 为总体含量,n 为样本含量,其中 n/N 为抽样比,若小于 5%可以忽略不计。(二)系统随机化抽样 也称为机械抽样或等距抽样。它是指按照总体一定顺序,机械地每隔若干单位抽取一个研究对象组成样本的方法(图 3-1)。采用系统抽样的基本
8、步骤如下:1.确定目标人群的特征。2.将目标人群中的每个个体排序、编号,如从 1N相继编号。3.确定抽样间隔:K=N/n。式中 N 为总体单位总数,n为样本含量;根据抽样间隔,把总体依次分成 k 组。4.在第一组人群中,用随机抽样方法抽取个体 i 作为研究对象。然后依次加上 K 作为下一组的样本号,即第 j 组内的被抽中的样本号为:i+(j-1)K。以此来确定所有的样本。系统抽样优点:(1)事先不需知道总体内的单位数;(2)容易在人群现场进行抽图 3-2 分层抽样示意图 样,特别是总体人数比较多时,也容易进行;(3)所得到的样本是从均匀分布在总体各个部分,一般代表性较好。系统抽样的缺点:假如总
9、体各单位的分布呈周期性趋势,而抽样间隔刚好是其周期的倍数,则可能使样本产生很大的偏性。系统抽样标准误的计算可用单纯随机抽样公式代替。(三)分层抽样 如果一个总体中各个单位间的变异比较大,那么采用单纯随机抽样的方法获得样本的代表性并不很好。对这样的总体进行抽样,可以采用分层抽样的方法。先把总体按某种特征(影响变异最大的因素,如年龄、性别、文化水平、疾病程度等)分为若干层,然后分别从每一层内进行单纯随机抽样,组成一个样本,见图 3-2。通过分层,把内部变异很大的总体分成一些内部变异较小的层。每一层内个体变异越小越好,而层间变异则越大越好。分层可以提高总体指标估计值的精确度,比单纯随机抽样所得到的结
10、果准确性更高,能保证总体中每一个层都有个体被抽到。分层调查除了能估计总体的参数值,还可以分别估计各个层内的情况。如果各层内的样本数 ni按各层单位数(Ni)的比例分配,即:NNnini (3-3)式 3-3 中 n 为总样本数,N 为总体单位数,Ni为各层内单位数,这种设计称为按比例分配的分层抽样。其标准误的计算公式如下:均数的标准误:iinSNnn22x)1)(1(S (3-4)率的标准误:)1(1)1(1S22pppnnniiiiNn (3-5)若各层内样本数 ni按下列公式计算:率的抽样:iiiipNNnniqqpii (3-6)均数抽样:iiiiiNNnn (3-7)上两式中 i为总体
11、第 i层的标准差;pi为总体第 i层的率,qi=1-pi。在这种情况下所获得的样本均数或样本率的方差最小,称为最优分配的分层抽样,其抽样误的计算公式如下:均数的标准误:)(1(1S22xnsNnNiiiiiN (3-8)率的标准误:11)1(1S2piiiiiinppNNnN (3-9)(四)整群抽样 采用单纯随机抽样等方法获得的研究对象可能包含在总体中的每一个部分。虽然这种调查覆盖面较大,但是,调查所花的人力、物力将很大,在现场也不容易组织实施。如先将总体分成若干群组(如居民区、班级等),以这些群组为基本单位,随机抽取部分群组作为观察单位组成样本,这种抽样方法称为整群抽样。如被抽到群组中每一
12、个个体都作为研究对象,称为单纯整群抽样。若对被抽到群组再采用随机的方法选择部分个体组成研究对象,称为二阶段抽样。整群抽样的特点:(1)容易组织与实施,节省人力、物力;(2)群间差异越小,抽取群数越多,代表性越好;(3)与单纯随机抽样相比,抽样误差较大。因此,整群抽样调查的样本量比其他方法要增加 1/2 左右。图 3-3 多级抽样示意图 整群抽样设计要求各群组之间的变异不能太大,否则抽样误差比较大。(五)多级抽样 在大型流行病学调查中,常常将上面几种抽样方法综合使用。如先从总体中抽取范围较大的单元,称为一级抽样单位(如省、自治区、直辖市),再从每个抽中的一级单元中抽取范围较小的二级单元(县、乡、
13、镇、街道),最后抽取其中部分范围更小的单元(如村,居委会)作为调查单位,见图 3-3。每个阶段的抽样可以采用单纯随机抽样、系统抽样或其他抽样方法。多级抽样可以充分利用各种抽样方法的优势,克服各自的不足,并能节省人力、物力。三、随机化分组的常用方法 在实验性研究中,除了干预因素外,实验组和对照组在非研究因素的分布上一致,这样才能消除这些因素对实验结果的影响。通过随机化分组,可以获得有均衡性的实验组和对照组。常用的随机分组方法有完全随机化分组、区组随机化分组、分层随机化分组和整群随机化分组等。(一)完全随机化分组 完全随机化就是用抽签或随机化数字表等方法直接对实验单位进行随机化分组,分组后各组实验
14、单位的个数可以相同也可以不同。若为小样本资料,当组间个体数目差异较大时,需重新随机分组,直至两组样本含量相近为止。完全随机化简单易行,是实施其他随机分组方法的基础,但样本含量较大时,工作量较大,不易实施。完全随机化的基本步骤如下:1.将每个研究对象排序;2.给每个对象分配一个随机数字,随机数可从随机数字表或随机函数获得(见本节第二部分);3.事先确定分组的方法。如根据随机数字的单、双数分成二组;把随机数字除以 3 后的余数分成三组。4.根据随机数字进行分组。例 3-1:将 12 只小白鼠用完全随机化的方法分成 3组。1.将 12只小鼠依次编号 112;2.从随机数字表(表 3-1)中的任一行任
15、一列开始,如第四行第一列开始,依次读取两位随机数分配给每只小鼠;3.将随机数字除以 3 后记录余数。并规定余数为 0为 B 组,1为 C组,2 为 A组;4.根据余数和选择方法,确定各小鼠的分组。分组结果见表 3-2。(二)配对设计 配对设计是将受试对象按某些特征或条件配成对子,然后分别把每对中的两个受试对象随机分配到实验组与对照组(或不同处理组)。这种设计的优点是能缩小受试对象间的个体差异,从而减少实验误差,提高实验效率。受试对象配对的特征或条件,主要是指年龄、性别、体重、环境条件等非实验因素。在医学研究中,用同一受试对象作比较,称为同体比较或自身对照。例如同一组病人用某药治疗前后某项指标的
16、比较;同一批受试对象施加某种处理因素后不同部位或不同器官变化情况的比较,如左眼与右眼,左手与右手的比较;同一批受检样品施以不同检测方法或培养方法所得结果的比较。这些设计方法也属于配对实验。(三)区组随机化 区组随机化是配对设计的扩大。配对设计是将多方面条件近似的受试对象配成对子(两个研究对象)。区组随机化设计是将非研究因素分布相同或相近的受试对象组成区组或配伍组。每个区组内受试对象数目取决于处理因素水平数。各区组间的受试对象不仅数目相等,而且生物学特点也较均衡;区组随机化设计缩小了组间差别,提高了实验效率。例 3-2:将 12 只小鼠,按区组设计要求,分成 3个处理组。分组步骤如下:1.将 1
17、2 只小鼠按照性别相同、体重相近的原则分成 4 个区组,每个区组内有 3 只小鼠;表 3-2 完全随机化分组方法 2.给每一只小鼠分配一个随机数字;3.在每个区组内,根据随机数字的大小分至甲、乙、丙 3 组中;分组结果见表 3-3。(四)分层随机化 当研究对象变异较大,如按照完全随机化的方法进行分组,比较各组间某些混杂因素如年龄、性别等可能分布不均。如按影响研究对象变异最大的因素如年龄、性别、种族、文化程度、居住条件等进行分层,在每层内分别随机地把研究对象分配到不同组间,这种方法称为分层随机化分组。分层设计可以更好地保证各处理组间达到良好的均衡性,提高检验效率。分层随机化的基本步骤如下:1.根
18、据研究对象的某个非处理因素(混杂因素)对样本进行分层;2.在每一层内进行随机化分组分成实验组和对照组;3.各层实验组的研究对象组成实验组,对照组的研究对象组成对照组,见图 3-4。(五)整群随机化 按社区或一群组为单位分配,即以居民区、班级、村庄、医院、家庭等为单位进行随机分组、不直接涉及区组内的研究对象。例如,把 10 个班的大学生,以班级为单位随机分成 2组,见图 3-5。该方法容易实施,可以节约人力、物力,适用于大规模调查和研究,但抽样误差较大。实施整群随机化分组要求各群组内变异较小、同质性要高。第二节 对照的原则 有比较才有鉴别。在医学研究中,除了有研究因素或接受处理因素的暴露组或实验
19、组图 3-4 分层随机化分组示意图 表 3-3 随机区组分组方法 图 3-5 整群随机化分组示意图 外,还同时设立对照组。对照组是除了不接受实验组的干预措施外,其他非研究因素的分布与实验组完全一致的研究对象。通过与对照组的比较,才能评价研究因素的作用,并消除其它的非研究因素的影响。一、设立对照的意义 与其它自然科学相比,生物医学研究更具复杂性。除了研究因素与研究效应有关外,还有其它许多非研究因素影响研究结果。这些因素可以分为:1 不能预知结局的因素 个体的人口学特征和其他生物学因素如年龄、性别、职业、饮食、营养、免疫、精神心理、种族、遗传因素等。由于这些因素的存在,导致在同样的暴露因素或同一干
20、预因素的作用下,研究结局有差别。研究对象产生的研究效应是包括研究因素和众多的非研究因素共同作用的结果。对于自限性疾病,即使不经特异的治疗,也会好转或痊愈。如果不消除这些因素的影响,很难分析研究因素的真实效应。2 霍桑效应(Hawthorne Effect)是指研究对象由于成为研究中受注意的目标而改变其行为并产生一定的效应,这些效应与所接受的干预因素无关。如对医院或医生的信任,对治疗产生有利效应。反之,如果不信任,则对治疗会产生不利的效应。3 安慰剂效应 安慰剂(placebo)是指不具有特异性治疗或致病效应的制剂,与干预药物在外形、颜色、气味、味道等方面没有差别。使用安慰剂作为对照的措施,要注
21、意安慰剂效应。安慰剂效应是指由于安慰剂的使用,产生的一些非特异效应,包括类似于干预因素的效应。要消除这些非研究因素的影响,把研究因素的真实效应表现出来,必须设立对照。实验组:EFFFFn111211 (3-10)对照组:EFFFFn200201 (3-11)F 因素的真实效应 EEE21 (3-12)上式成立的前提条件:F11=F01,F12=F02,F1n=F0n 即对照组的研究对象,除了研究因素之外,其它非研究因素的分布与实验组一致,即实验组和对照组在主要非研究因素上具有均衡性。有均衡性,才有可比性,这种对照称为有效的对照。只有正确设立对照,才能把处理因素的效应充分暴露出来,平衡非处理因素
22、对试验结果的影响,有效控制各种混杂因素。均衡性也是研究设计中的一项基本要求,在有些论著中把它独立于对照,作为一项医学研究设计的基本原则。通过对实验组和对照组的研究效应进行比较,反映研究因素真实的效应和效果。在医学科研中,尤其是对一些效应随季节变化(如慢性支气管炎的发病或疗效)、自限性疾病(如甲型病毒性肝炎、流行性感冒等)、或以主观感觉或心理效应作为主要观察指标的研究时,必须设立严格的对照。例如 20 世纪 60 年代出现的卤碱疗法、鸡血疗法等,都没有严格设计对照,虽轰动一时,最终却造成了许多不良影响。二、常见的对照形式(一)空白对照 即无干预措施,对照组不加任何处理措施。常用于干预试验疗效研究
23、,以评定测量方法的准确性,观察实验是否处于正常状态,也可排除自然因素或自愈因素对试验结果的影响。如观察某种新疫苗预防某种传染病的效果,实验组儿童接种该疫苗,对照组儿童不接种任何免疫制品,最后比较两组的血清学和流行病学指标。在对感冒、皮炎等有自愈倾向的疾病进行防治效果研究时,空白对照可以很好地说明疾病的痊愈是防治的效果还是自然痊愈。空白对照的缺点是由于不给予患者任何治疗措施,在一些疾病的治疗试验中可能会违背医学伦理原则。此外,由于不能实施盲法观察,故无法排除心理因素对结果的影响。(二)安慰剂对照 对照组给予安慰剂。安慰剂是一种在外形(剂型、颜色、大小、气味、味道)与实验药物完全相同,但又不具有特
24、异有效成分的制剂。常用乳糖、淀粉和生理盐水制成。使用安慰剂对照主要是为了避免心理因素对试验结果的影响;也可消除疾病自然进程的影响,观察到试验药物的真正作用。考虑到伦理学原则,安慰剂对照一般用于所研究的疾病尚无有效的防治药物或使用后不会影响到对照组研究对象的健康。同时,应用这一对照,要注意安慰剂效应的影响。(三)实验对照 为了有效地控制影响试验结果的非研究因素,仅采用空白对照是不够的,此时可以使用实验对照,即对照组的操作条件与实验组一致。例如青霉素过敏试验,以青霉素溶媒为实验对照,可排除由溶媒引起的过敏反应。再如观察某中药预防学生流感的效果,试验组服用该中药,同时每天进行教室的消毒、换气;对照组
25、不服用该中药,但和试验组一样每天进行教室的消毒、换气。(四)标准对照 在临床试验中,考虑到要保护对照组人群的健康不受损害,有时不宜设立安慰剂对照或空白对照。这种情况下,可以采用目前公认有效的药物或治疗方法作为对照组的措施,即标准对照。采用标准对照,一方面可以起到比较的作用,即消除非研究因素对研究效应的影响。另一方面,也能保护对照组人群的健康,不违背医学伦理学原则。(五)自身对照 自身对照是指对照和实验在同一研究对象中进行。研究对象在前、后两个阶段,分别使用两种不同的干预措施,比较干预的效果,或者某种方法治疗前、后的比较。自身前后对照设计简单,但其运用前提是如果不给这些研究对象如病人以有效的治疗
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 医学 科研 设计 基本原则
限制150内