2023届云南民族大附属中学九年级数学第一学期期末综合测试试题含解析.pdf
《2023届云南民族大附属中学九年级数学第一学期期末综合测试试题含解析.pdf》由会员分享,可在线阅读,更多相关《2023届云南民族大附属中学九年级数学第一学期期末综合测试试题含解析.pdf(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022-2023 学年九上数学期末模拟试卷 考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用 2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题 3 分,共 30 分)1下列方程中,关于 x的一元二次方程是()A3(x1)22(x1)B21x1x20 Cax2bxc0 Dx22xx21 2如图,已知 E,F分别为正方形 ABCD的边 AB,BC的中点,AF与 DE交于点 M,O为 B
2、D的中点,则下列结论:AME=90;BAF=EDB;BMO=90;MD=2AM=4EM;23AMMF其中正确结论的是()A B C D 3如图,有一块直角三角形余料 ABC,BAC=90,D是 AC的中点,现从中切出一条矩形纸条 DEFG,其中 E,F在BC上,点 G在 AB上,若 BF=4.5cm,CE=2cm,则纸条 GD的长为()A3 cm B2 13cm C132cm D133cm 4某商品原价格为 100 元,连续两次上涨,每次涨幅 10%,则该商品两次上涨后的价格为()A121 元 B110 元 C120 元 D81 元 5下列事件中,是随机事件的是()A明天太阳从东方升起 B任意
3、画一个三角形,其内角和为 360 C经过有交通信号的路口,遇到红灯 D通常加热到 100时,水沸腾 6下列图形中,既是轴对称图形,又是中心对称图形的是()A正三角形 B正五边形 C正六边形 D正七边形 7 一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到的红球的概率为 P,则 P 的值为()A13 B12 C 13或12 D 13或23 8如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点 A,B 的坐标分别为(-1,0),(0,3)现将该三角板向右平移使点 A 与点 O 重合,得到OCB,则点 B 的对
4、应点 B的坐标是()A(1,0)B(3,3)C(1,3)D(-1,3)9 在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点 已知二次函数24(0)yaxxc a的图象上有且只有一个完美点3 3,2 2,且当0 xm时,函数234(0)4yaxxca的最小值为3,最大值为 1,则 m的取值范围是()A10m B722m C24m D9742m 10sin45的值是()A12 B22 C32 D3 二、填空题(每小题 3 分,共 24 分)11如图,点A,B,C都在O上,连接AB,BC,AC,OA,OB,20BAO,则ACB的大小是_ 12如图,在ABC 中,DEBC,AE:
5、EC=2:3,DE=4,则 BC=_ 13在 RtABC中,两直角边的长分别为 6 和 8,则这个三角形的外接圆的直径长为_ 14点(2,5)在反比例函数kyx的图象上,那么 k_ 15如图,以点O为位似中心,将OAB放大后得到OCD,2,3OAAC,则ABCD_ 16如图,在Rt ABC中,390,2,4ACBACtanBCD平分ACB交AB于点,D DEBC,垂足为点E,则DE _ 17方程 x21 的解是_ 18如图,小杨沿着有一定坡度的坡面前进了 5 米,这个坡面的坡度为 1:2,此时他与水平地面的垂直距离为_米.三、解答题(共 66 分)19(10 分)如图,一次函数图象经过点0,2
6、A,与x轴交于点C,且与正比例函数yx的图象交于点B,B点的横坐标是1.1请直接写出点B的坐标(1,);2求该一次函数的解析式;3求BOC的面积.20(6 分)如图,破残的圆形轮片上,弦AB的垂直平分线交AB于点C,交弦AB于点D.已知12AB cm,4CD c m.(1)求作此残片所在的圆;(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径.21(6 分)如图 1 为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上当150ABC,165BCD时,如图 2,连杆端点D离桌面l的高度是多少?22(8 分)如图所示,在正方形 ABCD 中,
7、E,F 分别是边 AD,CD 上的点,AEED,DF=14DC,连结 EF 并延长交 BC 的延长线于点 G,连结 BE(1)求证:ABEDEF(2)若正方形的边长为 4,求 BG 的长 23(8 分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字 1,2,1 (1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 (2)小明和小颖用转盘做游戏,每人转动转盘一次,若两次指针所指数字之和为奇数,则小明胜,否则小颖胜(指针指在分界线时重转),这个游戏对双方公平吗?请用树状图或者列表法说明理由 24(8 分)如图,一次函数y=kx+b(k0
8、)的图象与反比例函数my(m0)x的图象交于二、四象限内的 A、B 两点,与 x 轴交于 C 点,点 A 的坐标为(-3,4),点 B 的坐标为(6,n).(1)求该反比例函数和一次函数的解析式;(2)连接 OB,求AOB 的面积;(3)在 x 轴上是否存在点 P,使APC 是直角三角形.若存在,求出点 P 的坐标;若不存在,请说明理由 25(10 分)在平面直角坐标系 xOy中,有任意三角形,当这个三角形的一条边上的中线等于这条边的一半时,称这个三角形叫“和谐三角形”,这条边叫“和谐边”,这条中线的长度叫“和谐距离”(1)已知 A(2,0),B(0,4),C(1,2),D(4,1),这个点中
9、,能与点 O组成“和谐三角形”的点是 ,“和谐距离”是 ;(2)连接 BD,点 M,N是 BD上任意两个动点(点 M,N不重合),点 E是平面内任意一点,EMN是以 MN为“和谐边”的“和谐三角形”,求点 E的横坐标 t的取值范围;(3)已知O的半径为 2,点 P是O上的一动点,点 Q是平面内任意一点,OPQ是“和谐三角形”,且“和谐距离”是 2,请描述出点 Q所在位置 26(10 分)如图,在平面直角坐标系中,已知 ABC 三个顶点的坐标分别是 A(2,2),B(4,0),C(4,4)(1)请在图中,画出 ABC 向左平移 6 个单位长度后得到的 A1B1C1;(2)以点 O 为位似中心,将
10、 ABC 缩小为原来的12,得到 A2B2C2,请在图中 y 轴右侧,画出 A2B2C2,并求出 A2C2B2的正弦值 参考答案 一、选择题(每小题 3 分,共 30 分)1、A【分析】依据一元二次方程的定义判断即可【详解】A.3(x+1)2=2(x+1)是一元二次方程,故 A 正确;B.21x1x20 是分式方程,故 B 错误;C.当 a=0 时,方程 ax2+bx+c=0 不是一元二次方程,故 C 错误;D.x2+2x=x2-1,整理得 2x=-1 是一元一次方程,故 D 错误;故选 A.【点睛】此题考查一元二次方程的定义,解题关键在于掌握其定义.2、D【解析】根据正方形的性质可得 AB=
11、BC=AD,ABC=BAD=90,再根据中点定义求出 AE=BF,然后利用“边角边”证明ABF 和DAE 全等,根据全等三角形对应角相等可得BAF=ADE,然后求出ADE+DAF=BAD=90,从而求出AMD=90,再根据邻补角的定义可得AME=90,从而判断正确;根据中线的定义判断出ADEEDB,然后求出BAFEDB,判断出错误;根据直角三角形的性质判断出AED、MAD、MEA三个三角形相似,利用相似三角形对应边成比例可得2AMMDADEMAMAE,然后求出 MD=2AM=4EM,判断出正确,设正方形 ABCD 的边长为 2a,利用勾股定理列式求出 AF,再根据相似三角形对应边成比例求出 A
12、M,然后求出 MF,消掉 a 即可得到 AM=23MF,判断出正确;过点 M 作 MNAB 于 N,求出 MN、NB,然后利用勾股定理列式求出 BM,过点 M 作 GHAB,过点 O作 OKGH于 K,然后求出 OK、MK,再利用勾股定理列式求出 MO,根据正方形的性质求出 BO,然后利用勾股定理逆定理判断出BMO=90,从而判断出正确【详解】在正方形 ABCD中,AB=BC=AD,ABC=BAD=90,E、F 分别为边 AB,BC 的中点,AE=BF=12BC,在ABF 和DAE 中,AEBFABCBADABAD,ABFDAE(SAS),BAF=ADE,BAF+DAF=BAD=90,ADE+
13、DAF=BAD=90,AMD=180-(ADE+DAF)=180-90=90,AME=180-AMD=180-90=90,故正确;DE 是ABD 的中线,ADEEDB,BAFEDB,故错误;BAD=90,AMDE,AEDMADMEA,2AMMDADEMAMAE AM=2EM,MD=2AM,MD=2AM=4EM,故正确;设正方形 ABCD 的边长为 2a,则 BF=a,在 RtABF 中,AF=222225ABBFaaa BAF=MAE,ABC=AME=90,AMEABF,AMAEABAF,即25AMaaa,解得 AM=2 55a MF=AF-AM=2 53 55=55aaa,AM=23MF,故
14、正确;如图,过点 M 作 MNAB 于 N,则 MNANAMBFABAF 即2 5525aMNANaaa 解得 MN=a52,AN=45a,NB=AB-AN=2a-45a=65a,根据勾股定理,BM=2222622 10555NBMNaaa 过点 M 作 GHAB,过点 O作 OKGH于 K,则 OK=a-a52=a53,MK=65a-a=15a,在 RtMKO中,MO=22221310555MKOKaaa 根据正方形的性质,BO=2a222a,BM2+MO2=2222 1010255aaa 22222BOaa BM2+MO2=BO2,BMO 是直角三角形,BMO=90,故正确;综上所述,正确
15、的结论有共 4 个 故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键 3、C【详解】四边形 DEFG是矩形,GDEF,GD=EF,D是 AC的中点,GD是 ABC的中位线,12GDADBCAC,14.522GDGD,解得:GD=132.故选 D.4、A【分析】依次列出每次涨价后的价格即可得到答案.【详解】第一次涨价后的价格为:100(1 10%),第二次涨价后的价格为:100(1 10%)(110%)121(元),故选:A.【点睛】
16、此题考查代数式的列式计算,正确理解题意是解题的关键.5、C【分析】根据事件发生的可能性判断,一定条件下,一定发生的事件称为必然事件,一定不发生的事件为不可能事件,可能发生可能不发生的事件为随机事件.【详解】解:A 选项是明天太阳从东方升起必然事件,不符合题意;因为三角形的内角和为180,B 选项三角形内角和是 360是不可能事件,不符合题意;C 选项遇到红灯是可能发生的,是随机事件,符合题意;D 选项通常加热到 100时,水沸腾是必然事件,不符合题意.故选:C【点睛】本题考查了事件的可能性,熟练掌握必然事件、不可能事件、可能事件的概念是解题的关键.6、C【分析】根据轴对称图形与中心对称图形的概
17、念求解即可【详解】A、此图形不是中心对称图形,是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形既是中心对称图形,又是轴对称图形,故此选项正确;D、此图形不是中心对称图形,是轴对称图形,故此选项错误 故选:C【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转 180 度后两部分重合 7、D【分析】分情况讨论后,直接利用概率公式进行计算即可.【详解】解:当白球 1 个,红球 2 个时:摸到的红球的概率为:P=23 当白球 2 个,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 云南 民族 附属中学 九年级 数学 第一 学期 期末 综合测试 试题 解析
限制150内