现代防雷技术PPT课件第一章雷电及其参数.ppt
《现代防雷技术PPT课件第一章雷电及其参数.ppt》由会员分享,可在线阅读,更多相关《现代防雷技术PPT课件第一章雷电及其参数.ppt(45页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章雷电及其参数n雷电是大自然中最宏伟和恐怖的气体放电现象。对雷电的物理本质了解始于18世纪,最有名的当属美国的富兰克林和俄国的罗蒙诺索夫。富兰克林在18世纪中期提出了雷电是大气中的火花放电,首次阐述了避雷针的原理并进行了试验;罗蒙诺索夫则提出了关于乌云起电的学说。近几十年来,由于雷电放电对于现代航空、电力、通信、建筑等领域都有很大的影响,促使人们从20世纪30年代开始加强了对雷电及其防护技术的研究,特别是利用高速摄影、数字记录、雷电定向定位等现代测量技术所作的实测研究的成果,大大丰富了人们对雷电的认识。n第一节雷云的产生和雷电放电过程1.1.1雷电发生机理n雷电是由雷云放电引起的,关于雷云
2、的聚集和带电至今还没有令人满意的解释,目前比较普遍的看法是:热气流上升时冷凝产生冰晶,气流中的冰晶碰撞后分裂导致较轻的部分带负电荷并被风吹走形成大块的雷云;较重的部分带正电荷并可能凝聚成水滴下降,它们在重力作用下下落的速度大,并在下落过程中与其他水份粒子发生碰撞,结果一部分被另一水生成物捕获,增大水成物的体积,另一部分云粒子被反弹回去,这些反弹回去的云粒子通常带正电荷,悬浮在空中形成一些局部带正电的云区,而水生成物带上负电荷。由于水成物下降的速度快,而云粒子的下降速度慢,因而正、负电荷的微粒逐惭分离,最后形成带正电的云粒在云的上部,而带负电的水成物在云的下部。整块雷云里边可以有若干个电荷中心。
3、负电荷中心,离地大约50010000m。它在地面上感应出大量的正电荷。n随着雷云的发展和运动,一旦空间电场强度超过大气游离放电的临界电场强度(大气中约为30kV/cm,有水滴存在时约为10kV/cm)时,就会发生云间或对大地的火花放电。雷电放电包括雷云对大地,雷云对雷云和雷云内部的放电现象。大多数雷云放电都是在雷点与雷云之间进行的,只有少数是对地进行的。在防雷工程中,主要关心的是雷云对大地的放电,如图1-1所示。图图1-1云对地放电云对地放电n雷云对大地放电通常分为先导放电、主放电和辉光放电三个阶段。云一地之间的线状雷电在开始时往往从雷云边缘向地面发展,以逐级推进方式向下发展。每级长度约102
4、00m,每级的伸展速度约107m/s,各级之间有10100s的停歇,所以平均发展速度只有(18)105m/s,这种放电称为先导放电,如图如图1-3所示所示。当先导接近地面时,地面上一些高耸的物体(如塔尖或山顶)因周围电场强度达到了能使空气电离的程度,会发出向上的迎面先导。当它与下行先导相遇时,就出现了强烈的电荷中和过程,出现极大的电流(数十到数百千安),伴随着雷鸣和闪光,这就是雷电的主放电阶段。主放电的过程极短,只有50100s,它是沿着负的下行先导通道,由下而上逆向发展,故又称“回击”,其速度高达21071.5108m/s。以上是负电荷雷云对地放电的基本过程,可称为下行负雷闪;对应于正电荷雷
5、云对地放电的下行正雷闪所占的比例很小,其发展过程亦基本相似。主放电完成后,云中剩余的电荷沿着原来的主放电通道继续流入大地,看到的是一片模糊的发光,这就是辉光放电。n以上是负电荷雷云对地放电的基本过程,可称为下行负雷闪;对应于正电荷雷云对地放电的下行正雷闪所占的比例很小,其发展过程亦基本相似。主放电完成后,云中剩余的电荷沿着原来的主放电通道继续流入大地,看到的是一片模糊的发光,这就是辉光放电。n从旋转相机拍下的光学照片显示,大多数云对地雷击是重复的,即在第一次雷击形成的放电通道中,会有多次放电尾随,放电之间的间隔大约为0.5500ms。主要原因是:在雷云带电的过程中,在云中可形成若干个密度较高的
6、电荷中心,第一次先导一主放电冲击泄放的主要是第一个电荷中心的电荷。在第一次冲击完成之后,主放电通道暂时还保持高于周围大气的电导率,别的电荷中心将沿已有的主放电通道对地放电,从而形成多重雷击。第二次及以后的放电,先导都是自上而下连续发展的,没有停顿现象。放电的数目平均为23次,最多观测到42次。通常第一次冲击放电的电流最大,以后的电流幅值都比较小。图图1-2所示为用旋转相机和高压示波器拍摄和记录的负雷云对地放电的典型过程和电流波形。图图1-2 雷电放电的发展过程和雷电流的波形n若地面上存在特别高的导电性能良好的接地物体时,也可能首先从该物体顶端出发,发展向上的先导,称上行雷。但上行雷先导到达雷云
7、时,一般不会发生主放电进程,这是因为雷云的导电性能比大地差得多,难以在极短的时间内提供为中和先导通道中电荷所需要的主放电电流,而只能向雷云深处发展多分支的云中先导。通过宽广区域的电晕流洼,从分散的水性质点上卸下电荷,汇集起来,以中和上行先导中的部分电荷。这样电流放电过程显然只能是较缓和的,而不可能有大冲击电流的特性。其放电电流流一般不足千安,而延续时间则较长,可能长达10-1s。此外,上行先导从一开始就出现分支的概率较大。n雷击时的等值电路n雷击地面发生主放电的开始,可以用图图1-3中开关S的闭合来表示。图中Z是被击物与大地(零电位)之间的阻抗,是先导放电通道中电荷的线密度,S闭合之前相当于先
8、导放电阶段。S突然闭合,相当于主放电开始,如图图1-3(b)所示。发生主放电时,将有大量的正、负电荷沿先导通道逆向运动,并中和雷云中的负电荷。由于电荷的运动形成电流,因此雷击点A的电位也突然发生变化(u=iZ)。雷电流的大小与先导通道的电荷密度以及主放电的发展速度有关(i=v)。n在防雷研究中,最关心的是雷击点A的电位升高,而可以不考虑主放电速度、先导电荷密度及具体的雷击物理过程,因此可以从点的电位出发来把雷电放电过程简化为一个数学模型,如图图1-3(c)所示;进而得到其彼得逊等值电路,如图图1-3中(d)、(e)所示。图中,Z0表示雷电通道的波阻抗(我国规程建议取300400)。需要说明的是
9、:尽管雷云有很高的初始电位才可能导致主放电,但地面被击物体的电位并不取决于这一初始电位,而是取决于雷电流与被击物体阻抗的乘积。所以,从电源的性质看,雷电具有电流源的性质。图图1-3雷电放电模型和等值电路n在雷击点A与地中零电位面之间串接着一个阻抗,它可以代表被击中物体的接地电阻R,也可以代表被击物体的波阻抗Z。从图图1-3(e)中可以看出,当Z=0时,i=2i0;若Ztf,这种情况下tlag主要决定于ts。为了减小ts,一方面可提高外施电压使气隙中出现有效电子的概率增加,另一方面可采用人工光源照射,使阴极释放出更多电子。如用较小的球隙测冲击电压通常采取照射措施就是一例。在较长间隙中,电场不均匀
10、,局部场强高,出现有效电子的概率增加,统计时延短,放电时延往往主要决定于tf,且电场越不均匀tf越长。n三、雷电50%冲击击穿电压(U50%)n在持续电压作用下,当气体状态不变时,间隙距离一定,击穿电压就具有确定的数值,当间隙上所加电压达到击穿电压时,间隙就被击穿。n在冲击电压作用下,保持冲击电压波形不变,逐渐提高冲击电压的幅值,在幅值很低时,虽然多次重复施加冲击电压,但间隙均不击穿;随着幅值增高,间隙有时击穿而有时不击穿,这是因为随着外加电压的升高,放电时延缩短;当电压幅值增加到某一定值时,由于放电时延有分散性,对于较短的放电时延,击穿已有可能发生,而较长的放电时延,击穿则不发生。也就是说,
11、在多次施加同一电压值时,有时击穿,有时不击穿;随着电压幅值继续升高,间隙击穿的百分比越来越增加;最后,当电压超过某一值后,间隙百分之百击穿。n由于冲击电压作用下放电有分散性,所以很难准确得到一个使间隙击穿的最低电压值,因此工程上采用50%冲击击穿电压(U50%)来描述间隙的冲击击穿特性,即在多次施加同一电压时,用间隙击穿概率为50的电压值来反映间隙的耐受冲击电压的特性。n图1-8“棒-棒”和“棒-板”长空气间隙的雷电50%冲击击穿电压和极间距离的关系1-正极性“棒-板”;2-正极性“棒-棒”;3-负极性“棒-棒”;4-负极性“棒-板”;n采用50%冲击击穿电压决定绝缘距离时,应根据击穿电压分散
12、性的大小,留有一定的裕度。在均匀电场和稍不均匀电场中,击穿电压分散性小,其U50%和静态击穿电压Us相差不大,因此冲击系数(U50%与Us之比)接近1。而在极不均匀电场中,由于放电时延较长,其冲击系数均大于1,击穿电压分散性也大一些,其标准偏差可取3%。n实验表明:“棒-棒”和“棒-板”在间隙距离不很大时(几百厘米内)的冲击击穿特性有极性效应,气隙距离较大时同样存在极性效应,图图1-8给出了“棒-棒”和“棒-板”长空气间隙的雷电50%冲击击穿电压和极间距离的关系,可以看出:“棒-板”气隙有明显的极性效应,“棒-棒”气隙也有极性效应。n四、伏秒特性n由于雷电冲击电压持续时间短,间隙的击穿存在放电
13、时延现象,所以仅靠U50%冲击击穿电压来表征间隙击穿特性是不够的,还必须将击穿电压值与放电时间联系起来确定间隙的击穿特性,也就是伏秒特性,它是表征气隙击穿特性的另一种方法。n图1-9表示通过实验绘制气隙伏秒特性的方法,其步骤是保持间隙距离不变、保持冲击电压波形不变,逐级升高电压使气隙发生击穿,记录击穿电压波形,读取击穿电压值U与击穿时间t。注意到当电压不很高时击穿一般在波尾时间发生,当电压很高时,击穿百分比将达100%,放电时间大大缩短,击穿可能在波头时间发生。以图图1-9三个坐标点为例说明绘制方法:击穿发生在波前时,U与t均取击穿时的值(图中2、3坐标点);击穿发生在波尾时,U取波峰值,t取
14、击穿时对应值(图中1坐标点);将1、2、3各点连接起来,即可得到伏秒特性曲线。n图1-9气隙伏秒特性曲线的绘制方法(虚线表示原始冲击电压波形)n图1-10伏秒特性带与50%伏秒特性n1-上包线,2-50%伏秒特性,3-下包线,4-U50%n间隙的伏秒特性曲线的形状与间隙中的电场分布有关。在均匀电场和稍不均匀电场中,击穿时平均场强较高,放电发展较快,放电时延较短,伏秒特性曲线平坦;在极不均匀电场中,平均击穿场强较低,放电时延较长,放电分散性大,伏秒特性曲线较为陡峭。n实际上,放电时间有分散性,即在每级电压下可测得不同的放电时间,所以伏秒特性是如图1-10所示的以上、下包线为界的带状区域。工程上为
15、方便起见,通常用平均伏秒特性或50%伏秒特性曲线表征气隙的冲击击穿特性,在绝缘配合中伏秒特性具有重要意义。n图1-11表示被保护设备绝缘的伏秒特性1与保护间隙的伏秒特性2配合的情况,这种配合可达到完全保护,因为伏秒特性1的下包线时时都在伏秒特性2的上包线之上,即任何情况下保护间隙都会先动作从而保护了电气设备的绝缘。为了节约被保护设备的绝缘造价,应使伏秒特性1与伏秒特性2的间隔不致过大,要求保护间隙2的伏秒特性低而平坦。n用伏秒特性表征气隙的冲击击穿特性较为全面和准确,但其制作相当费时。在某些情况下,只用某一特定的,如50%冲击击穿电压值就够了。图1-11 伏秒特性的正确配合第二节、雷电放电的基
16、本型式与特点n雷电放电的基本型式n 雷电放电主要有三种主要的型式即1、云对地放电;2、云对云放电;3、云内放电。因第1种型式云对地放电对人类的活动影响较大,所以我们主要关心的是云对地放电。n(1)、云对地放电形成的直击雷(如图图1-1所示)当云层对地较低、或地面有高耸的尖端突起物时,雷云对地之间就会形成较高的场强,当场强达到一定的值时,雷云就会向地面发展向下的先导,当先导到达地面,或与大地迎面先导会合时,就开始主放电阶段。n在主放电中雷云与大地之间所聚集的大量电荷通过狭小的电离通道发生猛烈的电荷中和,放出能量,产生强烈的声和光,即电闪、雷鸣。在雷击点,有巨大的电流流过。大多数雷电流的峰值有几十
17、千安,也有少数达到上百千安。由于雷击是大极短的时间内释放较大的能量,因而会造成极大地破坏作用。n(2)、云对云放电当带不同电荷的云团相遇时,就会发生云对云的放电,云对云的放电其实是最主要的雷电活动型式。云对云放电对人类活动的影响要比云对地放电小得多,不会产生直击雷,直接造成人身伤亡和建筑物损毁事故。但云对云放电会在线路和网络上产生感应雷过电压,过电压的大小视雷电活动强弱和放电雷云离地面的高低而定。感应雷电压幅值与雷云对地放电时的电流大小、雷击点与线路间相对位置、雷击点周围环境(如土壤电阻率)、遭受感应雷击的线路的长度、线路埋设位置、设备接地装置的电阻等诸多因素有关系。一般来讲,云对云放电越强烈
18、,参与放电的云层离地面越低,所产生的感应雷过电压就愈高,反之则愈弱。感应雷的产生可由“静电感应”的效应产生,也可由“电磁感应”的效应产生,但大部分的情况是由这两种效应的综合作用而成。n(a)静电感应形成的感应雷过程、静电感应在线路中感应的过电压可由地闪引起,也可由云闪引起。例如:在架空线路上空有一团雷云,雷云底部带负电荷,由于静电感应,雷云将在大地上感应出正电荷,雷云与大地形成电场,因架空线处于该电场中而被极化,在靠雷云一侧带正电荷,靠大地一侧带负电荷,由于架空线路与大地间的绝缘不会无穷大,因此导线上的负电荷便向左右两方向移动渐渐泄入大地,导线上仅存有受雷击束缚的正电荷。在这片雷云对另一雷云放
19、电或者对大地放电时,则雷云与大地间的电场随之消失,导线上的束缚电荷变成自由电荷,并立即向导线两端移动,形成对地电压。(b)电磁感应形成的感应雷过程、最初人们认为感应雷主要是由静电感应的效应形成,根据这一理论,在线路上被感应出的雷过电压应该和线路架设的高度成正比,那么埋地电缆的架设高度为零,自然被感应出的雷过电压也应该为零,但实际当中经检测在埋地电缆上的雷过电压可高达数万伏,这里用静电感应的理论显然不能完善的解释这种现象。近年来,随着防雷科学技术研究的不断深入,一种新的解释理论产生了,这就是感应雷的电磁感应生成机理解释方法,这种方法认为:当直击雷放电过程中,强大的脉冲电流所产生的强力变化磁场将会
20、对周围的导线或金属物体产生电磁感应,从而引发过电压,以致发生闪击的现象。n(3)云内放电当带电云团的内部,带异号电荷中心之间的电场强疫达到空气间隙的击穿值时会发生云内放电,云内放电的强度一般都不会特高,属于最弱的一种雷电活动型式,对人类活动几乎没有什么影响,因而也很少受到人们的关注。n(4)球形雷、是一种橙色或红色的类似于火焰的发光球体,偶尔也有黄色、蓝色或紫色的。大多数球雷的直径在10100cm之间,球雷多在强雷暴时空中闪电最频繁的时候出现。球形雷通常沿水平方向以12m/s的速度上下滚动,有时距地面23m,有时距地面0.51m,它在空气中的漂游时间可由几秒到几分钟。关于球形雷的形成机理至今尚
21、无合理的解释,通常认为球雷是强雷暴时产生的分裂带电或放电云团。球雷常由建筑物的孔洞或门窗进入室内,最常见的是沿大树滚下进入建筑物并伴有“嘶嘶”声。球雷有时自然爆炸,有时遇到金属管线而爆炸。球雷有时遇到易燃物质则造成燃烧,遇到易燃、易爆气体或液体会造成剧烈的爆炸。有的球形雷会不留痕迹地自行消失,但大多数则伴有爆炸声,爆炸后偶尔有硫磺、臭氧或二氧化碳气味。球形雷火球可辐射出大量的热量,因此它的烧伤力较大。n防护球形雷并不困难,比如采用法拉弟笼式避雷网,或将建筑物的金屋门窗接地,在雷雨天气时关闭门窗。堵上建筑物上不必要的孔洞。储存易燃、易爆物体的仓库和厂房的门窗和排气孔要加装接地的金属属防护网等措施
22、。n1.2.2雷电放电的选择性n 在同一区域内雷击分布不均匀的现象称为“雷电放电的选择性”。雷击虽是小概率事件,但它的发生仍有一定的规律可循。如河南省信阳市有一山名“振雷山”,之所以得名“振雷山”主要是信阳市大多数雷电活动时,雷电都在该山区活动,并多次发生对地雷击放电的现象。也就是说雷电活动在一定的区域内,特别是云对地放电会受地形、地势和季风的影响有一定的规律,掌握这些规律对防雷具有重要意义。n(1)雷击与地形、地势的关系、对于山区来说,雷电活动受地形、地势的影响较为明显,因为山区雷云的活动主要受季风的影响,而季风又受山势及地形的影响,比如两侧有高山、碍口,那么雷云就会随着季风的作用从山谷或碍
23、口穿越,这时如果附近有突出物,就会引起雷云对地放电,位于这些地段的线路或设施要么合理避让,要么采取特别的防雷措施。n(2)雷击与地质的关系、从现场资料分析可知:如果地面土壤分布不均匀,则在土壤电阻率特别小的地区,雷击的概率较大,这是由于由于静电感应的作用,在雷电先导放电阶段,地中的感应电流沿着电阻率较小的路径流通,使地面电阻率较小的区域被感而积累了大量与雷云相反的电荷,而雷电自然就朝这电阻率较小的地区发展。这就是为什么山区地下有金属矿的地方遭雷击概率大,河流附近雷击概率大的原因。n(3)雷击与地面设施的关系、当雷云运动到离地面较近的低空时,雷云与地面之间的电场受地面设施的影响而发生畸变,有时在
24、突出的物体上由于电场强度增大,还会发生向上的迎面先导,雷电放电自然就容易在雷云与地面设施之间发生。这就是为什么高塔和高耸的建筑物容易遭受雷击的根本原因。n(4)局部小气侯与雷击放电的关系、在雷电活动时工厂烟排出的热气流注、烟气(因烟气中含有导电的微粒和金属离子)它们比空气的电阻率小得多,有时更相当于半导体流注,一方面缩短了雷云与地面的矩离,另一方面会引起电场发生畸变,从而引导了雷击的发生,上海宝钢化工公司2005年8月17日的雷害事故,据分析就是由于局部小气侯的影响。n2005年8月17日21时45分,化工三期煤精酚水控制室操作人员听到一声爆炸巨响,A母线失电。当电气点检工到达现场时,发现3p
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 现代 防雷 技术 PPT 课件 第一章 雷电 及其 参数
限制150内