立体几何中向量法.ppt
《立体几何中向量法.ppt》由会员分享,可在线阅读,更多相关《立体几何中向量法.ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、立体几何中-向量法求空间角.空间的角:空间的角:空间的角常见的有:空间的角常见的有:线线角、线面角、面面角。线线角、线面角、面面角。空间两条异面直线所成的角可转化为两条相空间两条异面直线所成的角可转化为两条相交直线所成的锐角或直角。故我们研究线线角交直线所成的锐角或直角。故我们研究线线角时,就主要求时,就主要求 范围内范围内 的角;的角;斜线与平面所成的角是指斜线与它在面内斜线与平面所成的角是指斜线与它在面内的射影所成锐角,再结合与面垂直、平行或在的射影所成锐角,再结合与面垂直、平行或在面内这些特殊情况,线面角的范围也是面内这些特殊情况,线面角的范围也是 ;两个平面所成的角是用二面角的平面角来
2、两个平面所成的角是用二面角的平面角来度量。它的范围是度量。它的范围是 。总之,空间的角最终都可以转化为两相交直线所成的角。总之,空间的角最终都可以转化为两相交直线所成的角。因此我们可以考虑通过两个向量的夹角去求这些空间角。因此我们可以考虑通过两个向量的夹角去求这些空间角。(0,2p p异面直线所成角的范围:异面直线所成角的范围:思考:思考:结论:结论:一、线线角:一、线线角:直线与平面所成角的范围:思考:思考:结论:结论:二、线面角:二、线面角:ll三、面面角:三、面面角:二面角的范围:法向量法法向量法注意注意法向量的方向:一进一出,二面角等于法向量夹角;法向量的方向:一进一出,二面角等于法向
3、量夹角;同进同出,二面角等于法向量夹角的补角同进同出,二面角等于法向量夹角的补角例例1 如图,四面体如图,四面体ABCD中,中,O、E分别是分别是BD、BC的中点,的中点,(I)求证:)求证:AO平面平面BCD;(II)求异面直线)求异面直线AB与与CD所成角的大小;所成角的大小;(III)求点)求点E到平面到平面ACD的距离。的距离。解:(解:(I)提示)提示;数量积为零数量积为零 (II)解:以)解:以O为原点,如图建立空间直角坐标系,为原点,如图建立空间直角坐标系,所以异面直所以异面直线线AB与与CD所成角的所成角的余弦余弦值为值为(III)解:)解:设设平面平面ACD的法向量的法向量为
4、为则则令令得得是平面是平面ACD的一个法向量,又的一个法向量,又所以点所以点E到平面到平面ACD的距离的距离例例2、如图所示,在四棱锥如图所示,在四棱锥P-ABCD中,底面中,底面ABCD是正方形,侧棱是正方形,侧棱PD 底面底面ABCD,PD=DC,E是是PC的的中点。中点。(1)证明:证明:PA/平面平面EDB;(2)求求EB与底面与底面ABCD所成的角的正切值。所成的角的正切值。ABCDPEGxyzABCDPEGxyz(1)证明:设正方形边长为证明:设正方形边长为1,则,则PD=DC=DA=1.连连AC、BD交于交于G点点(2)求求EB与底面与底面ABCD所成的角的正切值。所成的角的正切
5、值。ABCDPEGxyz所以所以EB与底面与底面ABCD所成的角的正弦值为所成的角的正弦值为所以所以EB与底面与底面ABCD所成的角的正切值为所成的角的正切值为 方向朝面内,方向朝面内,方向朝面方向朝面外,属于外,属于“一进一出一进一出”的情的情况,二面角等于法向量夹角况,二面角等于法向量夹角1、如图,已知:直角梯形、如图,已知:直角梯形OABC中,中,OABC,AOC=90,SO面面OABC,且且OS=OC=BC=1,OA=2。求:求:(1)异面直线异面直线SA和和OB所成的角的余弦值所成的角的余弦值 (2)OS与面与面SAB所成角的余弦值所成角的余弦值 (3)二面角二面角BASO的余弦值的
6、余弦值OABCSxyz【测试】【测试】OABCSxyz1、如图,已知:直角梯形、如图,已知:直角梯形OABC中,中,OABC,AOC=90,SO面面OABC,且且OS=OC=BC=1,OA=2。求:求:(1)异面直线异面直线SA和和OB所成的所成的 角的余弦值角的余弦值 OABCSxyz1、如图,已知:直角梯形、如图,已知:直角梯形OABC中,中,OABC,AOC=90,SO面面OABC,且且OS=OC=BC=1,OA=2。求:求:(2)OS与面与面SAB所成角的余弦值所成角的余弦值 所以所以OS与面与面SAB所成角的余弦值为所成角的余弦值为OABCSxyz所以二面角所以二面角BASO的余弦值
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 向量
限制150内