第03章平面机构的运动分析精.ppt
《第03章平面机构的运动分析精.ppt》由会员分享,可在线阅读,更多相关《第03章平面机构的运动分析精.ppt(59页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第03章平面机构的运动分析第1页,本讲稿共59页作者:潘存云教授ACBED31 机构运动分析的目的与方法机构运动分析的目的与方法设计任何新的机械,都必须进行运动分析工作。以确定机械是否满足工作要求。1.位置分析位置分析研研究究内内容容:位位置置分分析析、速速度度分分析析和和加加速速度分析。度分析。确定机构的位置(位形),绘制机构位置图。确定机构的位置(位形),绘制机构位置图。确定构件的运动空间,判断是否发生干涉。确定构件的运动空间,判断是否发生干涉。确定构件确定构件(活塞活塞)行程,行程,找出上下极限位置。找出上下极限位置。从构件从构件点的轨迹点的轨迹构件位置构件位置速度速度加速度加速度原动件
2、的原动件的运动规律运动规律内涵:内涵:确定点的轨迹(连杆曲线)。确定点的轨迹(连杆曲线)。HEHD第2页,本讲稿共59页2.2.速度分析速度分析 通过分析,了解从动件的速度变化规律是否满足通过分析,了解从动件的速度变化规律是否满足 工作要求。如牛头刨。工作要求。如牛头刨。为加速度分析作准备。为加速度分析作准备。3.加速度分析:加速度分析:的目的是为确定惯性力作准备。的目的是为确定惯性力作准备。方法:方法:图解法图解法简单、直观、精度低、求系列位置时繁琐。简单、直观、精度低、求系列位置时繁琐。解析法解析法正好与以上相反。正好与以上相反。实验法实验法试凑法,配合连杆曲线图册,用于解决试凑法,配合连
3、杆曲线图册,用于解决 实现预定轨迹问题。实现预定轨迹问题。第3页,本讲稿共59页作者:潘存云教授12A2(A1)B2(B1)32 速度瞬心及其在机构速度分析中的应用速度瞬心及其在机构速度分析中的应用机机构构速速度度分分析析的的图图解解法法有有:速速度度瞬瞬心心法法、相相对对运运动动法法、线线图图法法。瞬瞬心心法法尤尤其其适适合合于于简单机构的运动分析。简单机构的运动分析。一、一、速度瞬心及其求法速度瞬心及其求法绝对瞬心绝对瞬心重合点绝对速度为零。重合点绝对速度为零。P21相对瞬心相对瞬心重合点绝对速度不为零。重合点绝对速度不为零。VA2A1VB2B1Vp2=Vp10 Vp2=Vp1=0两两个个
4、作作平平面面运运动动构构件件上上速速度度相相同同的的一一对对重重合合点点,在在某某一一瞬瞬时时两两构构件件相相对对于于该该点点作作相对转动相对转动,该点称瞬时速度中心。该点称瞬时速度中心。求法?1)1)速度瞬心的定义速度瞬心的定义第4页,本讲稿共59页瞬心的特点:瞬心的特点:该点涉及两个构件。该点涉及两个构件。2)瞬心数目)瞬心数目 每两个构件就有一个瞬心每两个构件就有一个瞬心 根据排列组合有根据排列组合有P12P23P13构件数构件数 4 5 6 8瞬瞬心心数数 6 10 15 281 2 3若机构中有若机构中有n个构件,则个构件,则N Nn(n-1)/2n(n-1)/2 绝对速度相同,相对
5、速度为零。绝对速度相同,相对速度为零。相对回转中心。相对回转中心。第5页,本讲稿共59页121212tt123)机构瞬心位置的确定)机构瞬心位置的确定1.通过运动副直接相联的两构件的瞬心通过运动副直接相联的两构件的瞬心nnP12P12P122.三心定律三心定律V12定定义义:三三个个彼彼此此作作平平面面运运动动的的构构件件共共有有三三个个瞬瞬心心,且它们且它们位于同一条直线上位于同一条直线上。第6页,本讲稿共59页三心定律的证明三心定律的证明反证法反证法213P12P132 23 3P23vP23vP23第7页,本讲稿共59页作者:潘存云教授3214举例:求曲柄滑块机构的速度瞬心。举例:求曲柄
6、滑块机构的速度瞬心。P141234P12P34P13P24P23解:瞬心数为:解:瞬心数为:1.作瞬心多边形圆作瞬心多边形圆2.直接观察求瞬心直接观察求瞬心3.三心定律求瞬心三心定律求瞬心N Nn(n-1)/2n(n-1)/26 n=46 n=4第8页,本讲稿共59页作者:潘存云教授作者:潘存云教授123465P24P13P15P25P26P35举例:举例:求图示六杆机构的速度瞬心。求图示六杆机构的速度瞬心。解:瞬心数为:解:瞬心数为:N Nn(n-1)/2n(n-1)/215 n=615 n=61.作瞬心多边形圆作瞬心多边形圆2.直接观察求瞬心直接观察求瞬心3.三心定律求瞬心三心定律求瞬心P
7、46P36123456P14P23P12P16P34P56P45第9页,本讲稿共59页1 1123四、速度瞬心在机构速度分析中的应用四、速度瞬心在机构速度分析中的应用1.求线速度求线速度已知凸轮转速已知凸轮转速1 1,求推杆的速度。,求推杆的速度。P23解:解:直接观察求瞬心直接观察求瞬心P13、P23。V2求瞬心求瞬心P12的速度的速度。V2V P12l(P13P12)1 1长度长度P13P12直接从图上量取。直接从图上量取。P13 根据三心定律和公法线根据三心定律和公法线 nn求瞬心的位置求瞬心的位置P12。nnP12第10页,本讲稿共59页作者:潘存云教授P24P132 22.求角速度求
8、角速度解:解:瞬心数为瞬心数为6个个直接观察能求出直接观察能求出4个个余下的余下的2个用三心定律求出。个用三心定律求出。求瞬心求瞬心P24的速度的速度。VP24l(P24P14)4 4 2(P24P12)/P24P14 a)铰链机构铰链机构已知构件已知构件2的转速的转速2 2,求构件,求构件4的角速度的角速度4 4。VP24l(P24P12)2P12P23P34P14方向方向:CW,与与2 2相同。相同。相对瞬心位于两绝对瞬心的同一侧,两构件转向相同VP2423414 4第11页,本讲稿共59页312b)高副机构高副机构已知构件已知构件2的转速的转速2 2,求构件,求构件3的角速度的角速度3
9、3。2 2解解:用三心定律求出用三心定律求出P P2323。求瞬心求瞬心P P2323的速度的速度:VP23l(P23P13)3 3 3 32 2(P13P23/P12P23)P P1212P P1313方向方向:CCW,与与2 2相反。相反。VP23VP23l(P23P12)2 2相对瞬心位于两绝对瞬心之间,两构件转向相反。n nn nP P23233 3第12页,本讲稿共59页312P P2323P P1313P P12123.求传动比求传动比定义:两构件角速度之比传动比。定义:两构件角速度之比传动比。3 3/2 2 P12P23/P13P23推广到一般:推广到一般:i i/j j P1j
10、Pij/P1iPij结论结论:两构件的角速度之比等于绝对瞬心至相对瞬心的两构件的角速度之比等于绝对瞬心至相对瞬心的 距离之反比距离之反比。角速度的方向为:角速度的方向为:相对瞬心位于两绝对瞬心相对瞬心位于两绝对瞬心之间之间时,两构件时,两构件转向相反。转向相反。相对瞬心位于两绝对瞬心的相对瞬心位于两绝对瞬心的同一侧同一侧时,两构件时,两构件转向相同转向相同。2 23 3第13页,本讲稿共59页4.4.用瞬心法解题步骤用瞬心法解题步骤绘制机构运动简图;绘制机构运动简图;求瞬心的位置;求瞬心的位置;求出相对瞬心的速度求出相对瞬心的速度;瞬心法的优缺点:瞬心法的优缺点:适合于求简单机构的速度,机构复
11、杂时因适合于求简单机构的速度,机构复杂时因 瞬心数急剧增加而求解过程复杂。瞬心数急剧增加而求解过程复杂。有时瞬心点落在纸面外。有时瞬心点落在纸面外。仅适于仅适于求速度求速度V V,使应用有一定局限性。使应用有一定局限性。求构件绝对速度求构件绝对速度V V或角速度或角速度。第14页,本讲稿共59页3-3 3-3 机构运动分析的矢量方程图解法机构运动分析的矢量方程图解法矢量方程图解法的基本原理和作法矢量方程图解法的基本原理和作法 矢量方程图解矢量方程图解(相对运动图解法)(相对运动图解法)原理原理理论力学中的运理论力学中的运动合成原理动合成原理1.根据运动合成原理列机构运动矢量方程根据运动合成原理
12、列机构运动矢量方程2.根据矢量方程图解条件作图求解根据矢量方程图解条件作图求解基本作法基本作法同一构件上两点间速度及加速度的关系同一构件上两点间速度及加速度的关系两构件重合点间的速度和加速度的关系两构件重合点间的速度和加速度的关系机构运动机构运动分析两种分析两种常见情况常见情况原理原理第15页,本讲稿共59页CD一、基本原理和方法一、基本原理和方法 运运动动合合成成原原理理:一一构构件件上上任任一一点点的的运运动动,可可以以看看作作是是随随同同该该构件上另一点的平动构件上另一点的平动(牵连运动牵连运动)和绕该点的转动和绕该点的转动(相对运动相对运动)的合成。的合成。因因每每一一个个矢矢量量具具
13、有有大大小小和和方方向向两两个个参参数数,根根据据已已知知条条件件的不同,上述方程有以下的不同,上述方程有以下四种情况四种情况:1、设有矢量方程:、设有矢量方程:D A+B+C D A+B+C大小:大小:?方向:方向:DABCAB D A+B+C 大小:?大小:?方向:?方向:?第16页,本讲稿共59页BCB D A+B+C 大小:大小:方向:方向:?D A+B+C大小:大小:?方向:方向:?DACDA第17页,本讲稿共59页2.同一构件上两点速度和加速度之间的关系同一构件上两点速度和加速度之间的关系 1)速度之间的关系速度之间的关系选速度比例尺选速度比例尺v m/s/mm,在任意点在任意点p
14、作图使作图使VAvpa,ab同理有:同理有:VCVA+VCA 大小:大小:?方向:方向:?CA?CA相对速度为:相对速度为:VBAvabVBVA+VBA按图解法得:按图解法得:VBvpb,不可解!不可解!p设已知大小:设已知大小:方向:方向:BABA?方向:方向:p b方向:方向:a b BAC第18页,本讲稿共59页abpc同理有:同理有:VCVB+VCB大小:大小:?方向:方向:?CB?CBVCVA+VCA VB+VCB不可解!不可解!联立方程有:联立方程有:作图得:作图得:VCv pcVCAv acVCBv bc方向:方向:p c方向:方向:a c 方向:方向:b c 大小:大小:?方向
15、:方向:?CA CB?CA CBACB第19页,本讲稿共59页作者:潘存云教授ACBcabpVBA/L/LBABAvab/l AB 同理:同理:vca/l CA称称pabc为为速度多边形速度多边形(或速度图解(或速度图解)p p为极点。为极点。得:得:ab/ABbc/BCca/CA abcABC abcABC 方向:方向:CW强调用相对速度求vcb/l CBcabp第20页,本讲稿共59页作者:潘存云教授作者:潘存云教授cabpACB速度多边形速度多边形的性质的性质:联接联接p点和任一点的向量代表该点和任一点的向量代表该 点在机构图中同名点的绝对速点在机构图中同名点的绝对速 度,指向为度,指向
16、为p该点。该点。联接任意两点的向量代表该两点联接任意两点的向量代表该两点 在在机构图中同名点的相对速度,机构图中同名点的相对速度,指向与速度的下标相反。如指向与速度的下标相反。如bc代代 表表VCB而不是而不是VBC,常用相对速,常用相对速 度来求构件的角速度。度来求构件的角速度。abcABCabcABC,称,称abcabc为为ABCABC的速的速 度影象,两者相似且字母顺序一致。度影象,两者相似且字母顺序一致。前者沿前者沿方向转过方向转过9090。称。称pabcpabc为为 PABCPABC的速度影象。的速度影象。特别注意:影象与构件相似而不是与机构位形相似!特别注意:影象与构件相似而不是与
17、机构位形相似!P极点极点p代表机构中所有速度为零的点的影象。代表机构中所有速度为零的点的影象。绝对瞬心D第21页,本讲稿共59页作者:潘存云教授cabp作者:潘存云教授ACB速度多边形的用途:速度多边形的用途:由两点的速度可求任意点的速度由两点的速度可求任意点的速度。例例如如,求求BCBC中中间间点点E E的的速速度度V VE E时时,bcbc上上中中间间点点e e为为E E点点的的影影象象,联联接接pepe就就是是V VE EEeD第22页,本讲稿共59页b作者:潘存云教授BAC2)加速度关系加速度关系求得:求得:aBapb选加速度比例尺选加速度比例尺a m/s2/mm,在任意点在任意点p作
18、图使作图使aAapab”设已知角速度设已知角速度,A点加速度和点加速度和aB的方向的方向A B两点间加速度之间的关系有:两点间加速度之间的关系有:aBaA+anBA+atBAatBAab”b方向方向:b”baBAab a方向方向:a bb 大小:大小:方向:方向:?BABA?BABA2 2lABaAaBap第23页,本讲稿共59页作者:潘存云教授aCaA+anCA+atCA aB+anCB+atCB 又:又:aC aB+anCB+atCB不可解!不可解!联立方程:联立方程:同理:同理:aCaA+anCA+atCA 不可解!不可解!作图求解得作图求解得:atCAac”c atCBacc”方向:方
19、向:c”c 方向:方向:c”c 方向:方向:p c?BAC大小:大小:?方向:方向:?2 2lCACACA?CACA大小:大小:?方向:方向:?2 2lCBCBCB?CBCBbb”apc”c”caCapc第24页,本讲稿共59页作者:潘存云教授作者:潘存云教授角加速度:角加速度:atBA/lAB得:得:ab/lABbc/lBC a c/lCA称称p pa ab bc c为为加速度多边形加速度多边形(或速度图解),(或速度图解),p p极点极点 abcABC 加速度多边形的特性:加速度多边形的特性:联接联接p点和任一点的向量代表该点和任一点的向量代表该 点在机构图中同名点的绝对加速点在机构图中同
20、名点的绝对加速 度,指向为度,指向为p该点。该点。aBA (atBA)2 2+(anBA)2 2aCA (atCA)2 2+(anCA)2 2aCB (atCB)2 2+(anCB)2 2方向:方向:CWa b”b/l ABbb”apc”c”cBAClCA 2+4lCB 2+4lAB 2+4aaba aca bc第25页,本讲稿共59页作者:潘存云教授作者:潘存云教授BAC联接任意两点的向量代表该两点在联接任意两点的向量代表该两点在机构图中同名点机构图中同名点 的相对加速度,指向与速度的下标相反。如的相对加速度,指向与速度的下标相反。如ab代代 表表aBA而不是而不是aAB,bc aCB,ca
21、 aAC。aab bc cABCABC,称,称a ab bc c为为ABCABC的的 加速度影象,称加速度影象,称p pa ab bc c为为PABCPABC的的加加速速 度影象,两者相似且字母顺序一致。度影象,两者相似且字母顺序一致。极点极点p p代表机构中所有代表机构中所有加加速度为零的点速度为零的点 的影象的影象。特特别别注注意意:影影象象与与构构件件相相似似而而不不是是与与机构位形相似!机构位形相似!用用途途:根根据据相相似似性性原原理理由由两两点点的的加加速速度求任意点的度求任意点的加加速度。速度。例如例如:求求BCBC中间点中间点E E的的加加速度速度a aE Ebc上中间点e为E
22、点的影象,联接pe就是aE。bb”apc”c”cE 常用相对切向加速度来求构件的角加速度。常用相对切向加速度来求构件的角加速度。e第26页,本讲稿共59页B1 13 32 2AC12BB122.两构件重合点的速度及加速度的关系两构件重合点的速度及加速度的关系 1)回转副回转副速度关系速度关系 VB1=VB2 aB1=aB2 VB1VB2 aB1aB2具具体体情情况况由由其其他他已已知知条条件件决决定定,这这里里仅讨论移动副。仅讨论移动副。2)高副和移动副高副和移动副 VB3VB2+VB3B2pb2b3 VB3B2 的方向的方向:b2 bb3 3 3 3=vpb3/lCB3 31 1大小:大小:
23、方向:方向:?BCBC公共点公共点第27页,本讲稿共59页 加速度关系加速度关系复习:哥(科)氏加速度:复习:哥(科)氏加速度:定义定义:运动基点的转动与相对于该运动基:运动基点的转动与相对于该运动基 点的相对移动相互耦合引起的一种点的相对移动相互耦合引起的一种 神奇的加速度神奇的加速度。大小:大小:2相对速度相对速度运动基点的角速度运动基点的角速度方向方向:从相对移动方向顺运动基点的角速:从相对移动方向顺运动基点的角速 度方向转度方向转90作者:潘存云教授3 3B(B2,B3)1 13 32 2AC1 13ak B3B2第28页,本讲稿共59页作者:潘存云教授正确判哥式加速度的存在及其方向正
24、确判哥式加速度的存在及其方向无无ak 无无ak 有有ak 有有ak 有有ak 有有ak 有有ak 有有ak 动坐标平动时,无动坐标平动时,无ak。判断下列几种情况取判断下列几种情况取B点为重合点时有无点为重合点时有无ak 当两构件构成移动副:当两构件构成移动副:且动坐标含有转动分量时,存在且动坐标含有转动分量时,存在ak;B123B123B1231B23B123B123B123B123 第29页,本讲稿共59页作者:潘存云教授3 3B1 13 32 2AC1 1pb2b3ak B3B2 加速度关系加速度关系aB3 apb3,结结论论:当当两两构构件件构构成成移移动动副副时时,重重合合点点的的加
25、加速速度度不不相相等等,且且移移动动副副有有转转动动分分量时,必然存在哥氏加速度分量。量时,必然存在哥氏加速度分量。+akB3B2 大小:大小:方向:方向:b2k3akB3B2的方向:的方向:VB3B2 顺顺3 3 转过转过9090 3 3atB3/lBCBCab3b3/lBCarB3B2 akb3 B C?2 23 3l lBCBC BCBC?l1 12 21 1BABA?BCBC2 2VB3B23 3 aB3=anB3+atB3=aB2+arB3B2此方程对吗?b”3p图解得:图解得:b 3第30页,本讲稿共59页作者:潘存云教授c二、用矢量方程图解法作机构速度和加速度分析(自学)二、用矢
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 03 平面 机构 运动 分析
限制150内