计量经济学课件22一元线性回归.pptx
《计量经济学课件22一元线性回归.pptx》由会员分享,可在线阅读,更多相关《计量经济学课件22一元线性回归.pptx(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、单方程计量经济学模型分为两大类:线性模型和非线性模型线性模型中,变量之间的关系呈线性关系非线性模型中,变量之间的关系呈非线性关系 一元线性回归模型一元线性回归模型:只有一个解释变量 i=1,2,nY为被解释变量,X为解释变量,0与1为待估待估参数参数,为随机干扰项随机干扰项第1页/共29页 回归分析的主要目的回归分析的主要目的是要通过样本回归函数(模型)SRF尽可能准确地估计总体回归函数(模型)PRF。估计方法估计方法有多种,其种最广泛使用的是普通普通最小二乘法最小二乘法(ordinary least squares,OLS)。为保证参数估计量具有良好的性质,通常对为保证参数估计量具有良好的性
2、质,通常对模型提出若干基本假设。模型提出若干基本假设。注:实际这些假设与所采用的估计方法紧密相关。第2页/共29页 一、线性回归模型的基本假设一、线性回归模型的基本假设 假设1、解释变量X是确定性变量,不是随机变量;解释变量之间互不相关。假设2、随机误差项具有零均值、同方差和不序列相关性:E(i)=0 i=1,2,n Var(i)=2 i=1,2,n Cov(i,j)=0 ij i,j=1,2,n 假设3、随机误差项与解释变量X之间不相关:Cov(Xi,i)=0 i=1,2,n 假设4、服从零均值、同方差、零协方差的正态分布 iN(0,2)i=1,2,n第3页/共29页 1、如果假设1、2满足
3、,则假设3也满足;2、如果假设4满足,则假设2也满足。注意:注意:以上假设也称为线性回归模型的经典假设经典假设或高斯(高斯(Gauss)假设)假设,满足该假设的线性回归模型,也称为经典线性回归模型经典线性回归模型(Classical Linear Regression Model,CLRM)。第4页/共29页 另外另外,在进行模型回归时,还有两个暗含的假设:假设5:随着样本容量的无限增加,解释变量X的样本方差趋于一有限常数。即 假设6:回归模型是正确设定的 假设5旨在排除时间序列数据出现持续上升或下降的变量作为解释变量,因为这类数据不仅使大样本统计推断变得无效,而且往往产生所谓的伪回归问题伪回
4、归问题(spurious regression problem)。假设6也被称为模型没有设定偏误设定偏误(specification error)第5页/共29页二、参数的普通最小二乘估计(二、参数的普通最小二乘估计(OLSOLS)给定一组样本观测值(Xi,Yi)(i=1,2,n)要求样本回归函数尽可能好地拟合这组值.普通最小二乘法(Ordinary least squares,OLS)给出的判断标准是:二者之差的平方和最小。第6页/共29页方程组(*)称为正规方程组正规方程组(normal equations)。第7页/共29页记上述参数估计量可以写成:称为OLS估计量的离差形式离差形式(d
5、eviation form)。)。由于参数的估计结果是通过最小二乘法得到的,故称为普通普通最小二乘估计量最小二乘估计量(ordinary least squares estimators)。第8页/共29页顺便指出,记则有 可得(*)式也称为样本回归函数样本回归函数的离差形式离差形式。(*)注意:注意:在计量经济学中,往往以小写字母表示对均值的离差。第9页/共29页 三、参数估计的最大或然法三、参数估计的最大或然法(ML)最大或然法最大或然法(Maximum Likelihood,简称ML),也称最大似然法最大似然法,是不同于最小二乘法的另一种参数估计方法,是从最大或然原理出发发展起来的其它估
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 课件 22 一元 线性 回归
限制150内