《防爆基础知识.pptx》由会员分享,可在线阅读,更多相关《防爆基础知识.pptx(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2、可燃性气体和蒸气的安全参数 可燃性气体和蒸气在点燃和爆炸的过程中有许多理化参数,与防爆安全有直接关系的有以下几个:爆炸界限、引燃温度、最小点燃能量、最大试验安全间隙、最大爆炸压力 2.1、爆炸界限爆炸界限-可燃性气体或蒸气与空气的混合物只有在某个浓度范围内才能爆炸(燃烧),超出此范围就不会被点燃,这一范围的最高点和最低点分别称为爆炸上限和爆炸下限。爆炸界限常用可燃性物质在可燃性混合物中的体积百分比(浓度)表示,例如,甲烷的爆炸下限是5。0%(体积比),爆炸上限是15%(体积比)。可燃性物质的浓度低于爆炸下限的混合物可以称作“过稀”,浓度高于爆炸上限可以称作“过浓”,过浓或过稀的混合物不能形
2、成爆炸或燃烧。工程上采用通风的方法降低环境中可燃性物质的浓度,以便避免爆炸危险。当环境中的可燃性物质的浓度低于爆炸下限的25%时,可认为该环境是安全的。一、可燃性气体和蒸气的爆炸特性一、可燃性气体和蒸气的爆炸特性第1页/共21页一、可燃性气体和蒸气的爆炸特性一、可燃性气体和蒸气的爆炸特性第2页/共21页 2.2 2.2、引燃温度、引燃温度-按照标准方法实验时,引燃爆炸性混合物的最低温度。在没有明火等点火源的情况下,可燃性混合物的温度达到某一温度时,由于内部氧化放热加剧而自动着火,也称作自燃,有时候也把引燃温度称作自燃温度。国际标准IEC600794:1975 爆炸性气体环境用电气设备 第4部分
3、:引燃温度实验方法规定了引燃温度的实验设备和实验方法,见图1。一、可燃性气体和蒸气的爆炸特性一、可燃性气体和蒸气的爆炸特性第3页/共21页可燃性物质的引燃温度差异很大,例如二硫化碳的引燃温度是102,乙醚是160,丁烷是365,异丁烷是460,甲烷是537,氢气是560,一氧化碳 是605。温度低于相应的引燃温度,可燃性混合物就不会自燃。一、可燃性气体和蒸气的爆炸特性一、可燃性气体和蒸气的爆炸特性第4页/共21页 在工程上不允许设备的表面温度超过环境中相应的可燃性物质的自燃温度,以避免由于过高温度引起点燃危险。为了便于设备的制造和现场选择电气产品,防爆标准将可燃性物质按照其引燃温度分为6组。按
4、照下表,可以方便地选用防爆电气产品地温度组别。例如,已知环境中存在异丁烷,则可选择T1 组别的防爆电气产品。如果环境中存在异丁烷和乙醚,则须选择T4组的防爆电气产品。一、可燃性气体和蒸气的爆炸特性一、可燃性气体和蒸气的爆炸特性第5页/共21页 2.3 2.3、最小点燃能量、最小点燃能量-在最易点燃浓度混合物中,一个电路的一次放电正好足够点燃混合物,这个电路总能量的最小值,表示为相应的物质与空气混合物的最小点燃能量。如果一次点燃是由于一个电容放电引起的,电容的电容量为C,电容两端的电压为V,则相应的放电能量Q为:Q12CV2 由于可燃性气体或蒸气的物质性质差异,它们被点燃时需要的活化能不同,当它
5、们被电火花点燃时,需要的电能量也不相同。例如,甲烷的最小点燃能量是0。28mJ,正丁烷是0。25mJ,异丁烷是 0。52mJ,乙烯是0。096mJ,氢气是0。019mJ。在工程上可以采取限制电路中能量的方法来避免电路断开或闭合时产生的火花点燃周围的爆炸性混合物,根据这种原理可以设计成本质安全电路和n型设备中的限能电路。在实际电路设计中,常常用电压和电流来表征电路中的能量,因此,在工程上常常利用最小点燃电压和最小点燃电流来判断电路的安全性能。一、可燃性气体和蒸气的爆炸特性一、可燃性气体和蒸气的爆炸特性第6页/共21页 2.4 2.4、最大实验安全间隙(、最大实验安全间隙(MESGMESG)-在标
6、准规定的实验条件下,一个外壳内最易点燃浓度的爆炸性混合物被点燃后产生的爆炸火焰穿越25mm长的接合面,不能点燃外壳外部环境的爆炸性混合物时,接合面两部分之间最大间隙。国标GB3836.111991 爆炸性气体环境用电气设备 第11部分:最大试验安全间隙测定方法 和国际标准IEC600791A:1975规定了最大试验安全间隙的试验设备和测量方法,见图2。一、可燃性气体和蒸气的爆炸特性一、可燃性气体和蒸气的爆炸特性第7页/共21页 影响气体爆炸火焰穿越狭缝引爆的因素很多,例如混合物的压力、温度、湿度以及点火源的位置都对其有不同影响,但是,对其影响最大的是可燃性物质的性质。乙炔、氢气、二硫化碳等气体
7、的爆炸火焰穿越间隙时传爆能力很强,即其最大实验安全间隙值较小,例如氢气MESG是0。28mm,甲烷等烷类物质的传爆能力较弱,其相应MESG值较大,例如甲烷MESG是1。14mm,丁烷是0。98mm,乙烯是0。65mm。一、可燃性气体和蒸气的爆炸特性一、可燃性气体和蒸气的爆炸特性第8页/共21页 按照可燃性气体的最大实验安全间隙值的大小,可以将气体按照传爆能力分级。根据分级参数,可以设计制造不同类别、级别的防爆电气产品,用户也根据上述参数将工作环境中的可燃性物质分类、分级,以便选择合适的防爆电气产品。一、可燃性气体和蒸气的爆炸特性一、可燃性气体和蒸气的爆炸特性第9页/共21页 2.5 2.5、最
8、大爆炸压力、最大爆炸压力 爆炸性混合物被点燃爆炸后,释放的热量使气体剧烈膨胀,因而产生很高的爆炸压力。由于可燃性气体的性质差异,最大爆炸压力也不相同。多数气体的最大爆炸压力在0。6Mpa-0.8Mpa之间,但乙炔的最大爆炸压力可以达到1。0Mpa。上述最大爆炸压力值是以在容积为8升的球形容器中测得的,如果容器的形状复杂,容易产生压力重叠现象,则最大爆炸压力可以达到23Mpa。爆炸压力能对设备和建筑物造成破坏,人们在设计电气设备外壳和设计厂房时应考虑爆炸压力的作用。一、可燃性气体和蒸气的爆炸特性一、可燃性气体和蒸气的爆炸特性第10页/共21页 在石油、化工、煤炭等一些工业部门,常常需要生产、加工
9、、储存、运输或使用可燃性气体或液体,这些可燃性液体或气体可以通过容器或管道裂缝,密封失效的接缝,操作孔,阀门等泄漏到周围环境中,它们与环境中的空气混合,形成爆炸性危险环境。如果在环境中也存在点燃源,就会产生燃烧或爆炸。为了防止产生爆炸和火灾危险,应该在上述场所中采取防爆措施。防爆措施在工程上分为两大类:一次一次(primary)(primary)防爆措施防爆措施-避免场所环境中存在爆炸性危险环境。由前述的产生爆炸或燃烧条件三要素可以知道,如果能够在环境中避免可燃性物质,或者在环境中避免氧化剂氧气,就可以从根本上避免火灾或爆炸危险。空气中的氧气是难避免的,可行的办法是避免可燃性物质。如果不能完全
10、避免可燃性物质,可以将可燃性物质的浓度限制在爆炸下限以下,也能避免产生爆炸危险。石油化工企业选用密闭的容器、管道和密封质量好的阀门,以避免工艺设备中的可燃性物质泄露到环境中。化工厂常常采用有房顶无墙壁的厂房,改善自然通风效果,或者采用强制通风(机械通风),使环境中的可燃性物质的浓度低于爆炸下限,达到避免爆炸危险的目的。二次二次(secondary)(secondary)防爆措施防爆措施-在爆炸危险环境避免点燃源。如果爆炸性危险环境不可避免,则在环境中消除点燃源。我们常常在油库、加油站中看到“严禁烟火”的牌子,就属于二次防爆措施。国家标准规定,在爆炸危险场所必须使用防爆电气产品,也属于二次防爆措
11、施。二、防止爆炸的措施二、防止爆炸的措施第11页/共21页 在石油、化工、煤炭等一些工业部门,常常需要生产、加工、储存、运输或使用可燃性气体或液体,这些可燃性液体或气体可以通过容器或管道裂缝,密封失效的接缝,操作孔,阀门等泄漏到周围环境中,它们与环境中的空气混合,形成爆炸性危险环境。如果在环境中也存在点燃源,就会产生燃烧或爆炸。为了防止产生爆炸和火灾危险,应该在上述场所中采取防爆措施。防爆措施在工程上分为两大类:一次一次(primary)(primary)防爆措施防爆措施-避免场所环境中存在爆炸性危险环境。由前述的产生爆炸或燃烧条件三要素可以知道,如果能够在环境中避免可燃性物质,或者在环境中避
12、免氧化剂氧气,就可以从根本上避免火灾或爆炸危险。空气中的氧气是难避免的,可行的办法是避免可燃性物质。如果不能完全避免可燃性物质,可以将可燃性物质的浓度限制在爆炸下限以下,也能避免产生爆炸危险。石油化工企业选用密闭的容器、管道和密封质量好的阀门,以避免工艺设备中的可燃性物质泄露到环境中。化工厂常常采用有房顶无墙壁的厂房,改善自然通风效果,或者采用强制通风(机械通风),使环境中的可燃性物质的浓度低于爆炸下限,达到避免爆炸危险的目的。二次二次(secondary)(secondary)防爆措施防爆措施-在爆炸危险环境避免点燃源。如果爆炸性危险环境不可避免,则在环境中消除点燃源。我们常常在油库、加油站
13、中看到“严禁烟火”的牌子,就属于二次防爆措施。国家标准规定,在爆炸危险场所必须使用防爆电气产品,也属于二次防爆措施。二、防止爆炸的措施二、防止爆炸的措施第12页/共21页 根据燃烧和爆炸条件三要素,可以采取不同的防爆措施,避免电气设备成为点燃源。3.13.1、隔爆外壳、隔爆外壳“d”-d”-能承受内部爆炸性气体混合物的爆炸压力,并阻止内部的爆炸向外壳周围爆炸性混合物传播的电气设备外壳。给电气设备制造一个坚固的外壳,所有接缝的间隙小于相应可燃性气体的最大实验安全间隙,如果可燃性气体进入外壳之内被电火花点燃产生爆炸,则爆炸火焰被限制在外壳之内,不能点燃外壳外部环境中的爆炸性混合物,从而保证了环境的
14、安全。隔爆外壳必须满足两个基本条件:3.1.1、外壳具有足够的机械强度,能够承受内部的爆炸压力而不损坏,也不产生影响防爆性能的永久性变形。3.1.2、外壳壁上所有与外界相通的接缝和孔隙小于相应的最大实验安全间隙。三、常用防爆类型的防爆原理三、常用防爆类型的防爆原理 第13页/共21页 上述隔爆外壳主要防爆措施:隔爆外壳材质要求;隔爆接合面的间隙长度和间隙宽度以及表面光洁度要求;紧固件和紧固螺纹孔的要求;透明件的要求;胶粘剂和胶封剂的要求;接地;电缆和导管引入装置;连锁或警告标志等。国家标准GB 3836.2-2000 对隔爆型电气设备的结构、实验和标志作了明确规定。隔爆外壳的标志是”d”,例如
15、一台隔爆型 电机的防爆标志是 Ex d IIB T4.其中,Ex表示防爆,d代表隔爆型,IIB代表工厂用设备IIB级,T4代表设备的温度组别T4组,即设备的表面温度不超过135。三、常用防爆类型的防爆原理三、常用防爆类型的防爆原理第14页/共21页 3.2 3.2、正压外壳(通风、充气型)、正压外壳(通风、充气型)“p”p”-在设备的外壳内通入一定压力的新鲜空气或惰性气体,使周围的可燃性气体不能进入外壳内部,从而阻止点燃源与爆炸性气体接触,达到防止爆炸的目的。正压型电气设备的的关键措施是设备外壳内部保护性气体(新鲜空气或惰性气体)的压力高于环境的压力:对于px或py型为至少50Pa,对于pz型
16、为至少25Pa。因此,设备需要配置鼓风机、管道和风压继电器等,它一般用于大型电动机和控制开关设备。国家标准GB3836.52004 对正压型防爆电气设备的结构、实验和标志作了规定。三、常用防爆类型的防爆原理三、常用防爆类型的防爆原理第15页/共21页 3.3 3.3、充油外壳、充油外壳“o”o”-将设备全部或部分浸在外壳中的油内,使设备不能点燃油面以上或外壳以外的爆炸性气体。主要安全措施:将带电部件浸入油面之下至少25mm;油符合标准GB2536 的变压器油;油温不允许高于100;设置油位指示;绝缘材料和密封材料应耐油;设备最大通断能力为点燃实验安全值的75%。这种防爆类型主要用于变压器和高压
17、开关。国家标准GB3836.6-2004 对该型电气设备的结构、实验和表示作了规定。充油外壳的标志是”o”。三、常用防爆类型的防爆原理三、常用防爆类型的防爆原理第16页/共21页 3.43.4、浇封型、浇封型“m m”-将设备可能产生火花或高温的部分浇封在浇封剂(树脂)中,使它们不能点燃周围的爆炸性混合物。主要安全措施:将电气元件用树脂浇封起来,浇封剂的自由表面与被浇封元件或导体件的浇封厚度不小于3mm;对浇封剂的介电强度、吸水性、耐光照、耐热和耐寒以及表面电阻有规定;表面温度限制。适用产品:电子器件或小电气元件等。标准:GB3836.92006对该型防爆电气设备的结构、实验和标志作了规定。三
18、、常用防爆类型的防爆原理三、常用防爆类型的防爆原理第17页/共21页 3.5 3.5、本质安全型、本质安全型“i”-i”-在规定的实验条件下,(设备的电路)正常工作或规定的故障状态下产生的点火花或热效应均不能点燃规定的爆炸性混合物。本质安全的主要防爆措施是限制电路中的能量,使产生的火花的能量小于相应的最小点燃能量。主要保护措施:电路的电压和电流限制;电路中的电容和电感限制;本安电路与非本安电路的隔离;可靠元件和组件的要求;安全栅的规定;故障分析和试验规定等。适用产品:测量、控制、通讯等弱电设备。标准:GB3836.42000对该型防爆电气设备的结构、实验和标志作了规定。三、常用防爆类型的防爆原
19、理三、常用防爆类型的防爆原理第18页/共21页 3.6 3.6、增安型、增安型“e”-e”-在正常运行条件下不会产生火花、电弧或可能点燃爆炸性混合物的设备结构上,采取措施提高安全程度,以避免在正常和认可的过载条件下(包括电动机堵转条件)出现这些现象的电气设备。增安型电气设备没有防爆的外壳和保护介质,它采取的是综合性的安全措施:限制设备的种类;电气间隙和爬电距离比较大;好的绝缘材料;规定导体连接方式;降低温升;提高外壳防护等级;配用合适的保护装置等。适用产品:异步电动机,变压器,接线盒等。标准:GB3836.32000 对该型防爆电气设备的结构、实验和标志作了规定。三、常用防爆类型的防爆原理三、常用防爆类型的防爆原理第19页/共21页以上所述的防爆类型都还必须遵守标准GB3836.12000爆炸性气体环境用电气设备 第1部分:通用要求的规定,必须取得防爆安全认证。三、常用防爆类型的防爆原理三、常用防爆类型的防爆原理第20页/共21页感谢您的观看!第21页/共21页
限制150内