高中数学一轮复习空间几何体的结构三视图直观图.pptx
《高中数学一轮复习空间几何体的结构三视图直观图.pptx》由会员分享,可在线阅读,更多相关《高中数学一轮复习空间几何体的结构三视图直观图.pptx(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、立体几何复习建议1、掌握三基(1)基本知识(2)基本技能:识图、作图(3)基本思想和方法:转化与化归、运动变化2、充分利用模型3、熟记一些重要结论4、树立自信心第1页/共50页立体几何复习要领立体几何复习要领立体几何点线面,做图识图是关键;立体几何点线面,做图识图是关键;理解概念和定理,图形处理割补添;理解概念和定理,图形处理割补添;学会分析找思路,一作二证三计算;学会分析找思路,一作二证三计算;善于思考和勤问,回归课本要牢记;善于思考和勤问,回归课本要牢记;第2页/共50页空空间间几几何何体体空间几何体的结构空间几何体的结构柱、锥、台、球的结构特征柱、锥、台、球的结构特征简单几何体的结构特征
2、简单几何体的结构特征三视图三视图柱、锥、台、球的三视图柱、锥、台、球的三视图简单几何体的三视图简单几何体的三视图直观图直观图斜二测画法斜二测画法平面图形平面图形空间几何体空间几何体柱、锥、台、球的表面积与体积柱、锥、台、球的表面积与体积画图识图第3页/共50页柱柱锥锥台台球球圆锥圆锥圆台圆台多面体多面体旋转体旋转体圆柱圆柱棱柱棱柱棱锥棱锥棱台棱台概念概念结构特征结构特征侧面积侧面积体积体积 球球概念概念性质性质侧面积侧面积体积体积由上述几何体组合在一起形成的几何体称为由上述几何体组合在一起形成的几何体称为简单组合体简单组合体第4页/共50页棱柱的概念复习棱柱的概念复习ABCDEABCDE HH
3、 底底底底两个互相两个互相平行的面平行的面叫做棱柱叫做棱柱的的底底其余各面叫做 棱柱的侧面 两个面的公共边叫做 棱柱的棱两个侧面的两个侧面的公共边叫做公共边叫做棱柱的棱柱的侧棱侧棱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫棱柱棱柱侧面与底面的 公共顶点叫 做棱柱的 顶点 不在同一个不在同一个面上的两个顶点面上的两个顶点的连线叫做棱柱的连线叫做棱柱 的的对角线对角线 HH HH HH HH HH 第5页/共50页四棱柱四棱柱平行六面体平行六面体长方体长方体直平行六面体直平行六面体正四棱柱正四棱柱正方体正方体底面变为底面变为平行四边形平行四边
4、形侧棱与底面侧棱与底面垂直垂直底面是底面是矩形矩形底面为底面为正方形正方形侧棱与底面侧棱与底面边长相等边长相等几种六面体的关系:几种六面体的关系:第6页/共50页【知识梳理】【知识梳理】棱锥棱锥 定义:定义:有一个面是多边形,其余各面是有一个公共顶点的有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫三角形,由这些面所围成的几何体叫棱锥棱锥。如果一个棱锥的底面是正多边形,并且顶点在底面如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心,这样的棱锥叫做的射影是底面中心,这样的棱锥叫做正棱锥正棱锥。第7页/共50页棱柱侧棱垂直于底面直棱柱底面是正多边形正棱柱棱锥
5、底面为正多边形,顶点在底面的射影为正多边形的中心正棱锥正棱台 由正棱锥截的的棱台 处理台体的思想方法是处理台体的思想方法是还台于锥还台于锥。第8页/共50页概念概念性质性质侧面积侧面积体积体积 棱柱棱柱有两个面互相平行,有两个面互相平行,其余各面都是四边其余各面都是四边形,并且每相邻两形,并且每相邻两个四边形的公共边个四边形的公共边都互相平行,这些都互相平行,这些面围成的几何体叫面围成的几何体叫做棱柱。做棱柱。(1)(1)侧棱都相等:侧棱都相等:(2)(2)侧面都是平行侧面都是平行四边形:四边形:(3)(3)两个底面与平两个底面与平行底面的截面是全行底面的截面是全等的多边形;等的多边形;侧面展
6、侧面展开图是开图是一组平一组平行四边行四边形形 棱棱锥锥一个面是多边形,一个面是多边形,其余各面是有一个其余各面是有一个公共顶点的三角形,公共顶点的三角形,由这些面所围成的由这些面所围成的几何体叫做棱锥。几何体叫做棱锥。平行底面的截面与平行底面的截面与底面相似。底面相似。侧面展侧面展开图是开图是一组三一组三角形角形 棱台棱台用一个平行于棱锥用一个平行于棱锥底面的平面去截棱底面的平面去截棱锥,底面与截面之锥,底面与截面之间的部分叫作棱台间的部分叫作棱台(1)(1)上下两个底面上下两个底面互相平行;互相平行;(2)(2)侧棱的延长线侧棱的延长线相交于一点;相交于一点;侧面展侧面展开图是开图是一组梯
7、一组梯形;形;有两个面互相平行,有两个面互相平行,其余各面都是四边其余各面都是四边形,并且每相邻两形,并且每相邻两个四边形的公共边个四边形的公共边都互相平行,这些都互相平行,这些面围成的几何体叫面围成的几何体叫做棱柱。做棱柱。一个面是多边形,一个面是多边形,其余各面是有一个其余各面是有一个公共顶点的三角形,公共顶点的三角形,由这些面所围成的由这些面所围成的几何体叫做棱锥。几何体叫做棱锥。用一个平行于棱锥用一个平行于棱锥底面的平面去截棱底面的平面去截棱锥,底面与截面之锥,底面与截面之间的部分叫作棱台间的部分叫作棱台(1)侧棱都相等:侧棱都相等:(2)侧面都是平行侧面都是平行四边形:四边形:(3)
8、两个底面与平两个底面与平行底面的截面是行底面的截面是全等的多边形;全等的多边形;平行底面的截面平行底面的截面与底面相似。与底面相似。(1)上下两个底面上下两个底面互相平行;互相平行;(2)侧棱的延长线侧棱的延长线相交于一点;相交于一点;侧面展侧面展开图是开图是一组平一组平行四边行四边形。形。侧面展侧面展开图是开图是一组三一组三角形。角形。侧面展侧面展开图是开图是一组梯一组梯形;形;V=Sh第9页/共50页旋转体的形成旋转体的形成几何体旋转图形旋转轴圆柱矩形所在的直线圆锥直角三角形 所在的直线圆台直角梯形 所在的直线球半圆 所在的直线任一边任一直角边垂直于底边的腰直径第10页/共50页 分别以矩
9、形、直角三角形的直角边、分别以矩形、直角三角形的直角边、直角梯形垂直于底边的腰所在的直线为旋直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而成的曲面所围成的转轴,其余各边旋转而成的曲面所围成的几何体,几何体,分别叫做分别叫做圆柱圆柱,圆锥圆锥,圆台。圆台。圆柱圆柱圆锥圆锥圆台圆台第11页/共50页顶点顶点S SA AB BO O底面底面轴轴侧侧面面母母线线 以直角三角形的一条直角边所在直线为旋转轴以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥。其余两边旋转形成的曲面所围成的几何体叫做圆锥。圆锥的结构特征圆锥的结构特征第12页/共50页球球的结构特
10、征的结构特征 以半圆的直径所在的直线为旋转轴,将半圆旋转所以半圆的直径所在的直线为旋转轴,将半圆旋转所形成的曲面叫作形成的曲面叫作球面球面,球面所围成的几何体叫作,球面所围成的几何体叫作球体球体,简称简称球球。球心球心半径半径直径直径O O第13页/共50页球的基本属性:球的基本属性:球面可看作与定点(球面可看作与定点(球心球心)的距离)的距离等于定长(等于定长(半径半径)的所有点的集合)的所有点的集合.第14页/共50页 在不透明物体后面的屏幕上留下影子的现象叫做在不透明物体后面的屏幕上留下影子的现象叫做投影投影其其中,光线叫做中,光线叫做投影线投影线,留下物体影子的屏幕叫做,留下物体影子的
11、屏幕叫做投影面投影面 投影线可自一点发出,也可是一束与投影面成一定角度的投影线可自一点发出,也可是一束与投影面成一定角度的平行线,这样就使投影法分为平行线,这样就使投影法分为中心投影中心投影和和平行投影平行投影 第15页/共50页 光由一点向外散射形成的投影,叫做光由一点向外散射形成的投影,叫做中心投影中心投影其投影其投影线交于一点线交于一点(投影中心投影中心)在中心投影中,在中心投影中,如果改变物体与投射中心或投影面之间如果改变物体与投射中心或投影面之间的距离、位置,则其投影的大小也随之改变的距离、位置,则其投影的大小也随之改变 第16页/共50页我们把在一束平行光线照射下形成的投影称为我们
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 一轮 复习 空间 几何体 结构 视图 直观图
限制150内