《九年级数学《圆的对称性》课件.pptx》由会员分享,可在线阅读,更多相关《九年级数学《圆的对称性》课件.pptx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、九年级数学圆的对称性1.掌握圆是轴对称图形及圆的中心对称性和旋转不变性.2.探索圆心角、弧、弦之间关系定理并利用其解决相关问题.(重点)3.理解圆心角、弧、弦之间关系定理中的“在同圆或等圆”条件的意义.(难点)学习目标 熊宝宝要过生日了!要把蛋糕平均分成四块,你会分吗?导入新课导入新课情境引入讲授新课讲授新课问题1 圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?问题2 你是怎么得出结论的?圆的对称性:圆是轴对称图形,其对称轴是任意一条过圆心的直线.用折叠的方法O圆的对称性探究归纳.OAB180问题3 将圆绕圆心旋转180后,得到的图形与原图形重合吗?由此你得到什么结论呢?圆
2、的对称性:圆是中心对称图形,对称中心为圆心.探究归纳问题4 把圆绕圆心旋转任意一个角度呢?仍与原来的圆重合吗?O圆是旋转对称图形,具有旋转不变性圆是旋转对称图形,具有旋转不变性.探究归纳u在同圆中探究在 O中,如果AOB=COD,那么,AB与CD,弦AB与弦CD有怎样的数量关系?COABD 由圆的旋转不变性,我们发现:在 O中,如果AOB=COD,那么,弦AB=弦CD归纳圆心角、弧、弦之间的关系O OAB 如图,在等圆中,如果AOBCO D,你发现的等量关系是否依然成立?为什么?CDu在等圆中探究 通过平移和旋转将两个等圆变成同一个圆,我们发现:如果AOB=COD,那么,AB=CD,弦AB=弦
3、CD.归纳 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等AOB=CODAB=CD AB=CDABODC弧、弦与圆心角的关系定理要点归纳想一想:定理“在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等”中,可否把条件“在同圆或等圆中”去掉?为什么?不可以,如图.ABODC如果弧相等那么弧所对的圆心角相等弧所对的弦相等如果弦相等那么弦所对应的圆心角相等弦所对应的优弧相等弦所对应的劣弧相等如果圆心角相等那么圆心角所对的弧相等圆心角所对的弦相等在同圆或等圆中题设结论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等弧、弦与圆心角关系定
4、理的推论要点归纳 抢答题1.等弦所对的弧相等.()2.等弧所对的弦相等.()3.圆心角相等,所对的弦相等.()例1 如图,AB,DE是 O 的直径,C是 O 上的一点,且AD=CE.BE和CE的大小有什么关系?为什么?EBCOAD 解:BE=CE.理由是:AOD=BOE,AD=BE.又AD=CE,BE=CE.BE=CE.关系定理及推论的运用典例精析解:例2 如图,AB是 O 的直径,COD=35,求AOE 的度数AOBCDE证明:AB=ACABC是等腰三角形.又ACB=60,ABC是等边三角形,AB=BC=CA.AOBBOCAOC.例3 如图,在 O中,AB=AC,ACB=60,求证:AOB=
5、BOC=AOC.ABCO 温馨提示:本题告诉我们,弧、圆心角、弦灵活转化是解题的关键.AB=CD,填一填:如图,AB、CD是 O的两条弦(1)如果AB=CD,那么_,_(2)如果 ,那么_,_(3)如果AOB=COD,那么_,_CABDEFOAB=CDAB=CDAB=CD(AOB=CODAOB=CODAB=CD(AB=CD(针对训练(4)如果AB=CD,OEAB于E,OFCD于F,OE与OF相等吗?为什么?解:OE=OF.理由如下:CABDEFO1如果两个圆心角相等,那么 ()A这两个圆心角所对的弦相等B这两个圆心角所对的弧相等C这两个圆心角所对的弦的弦心距相等D以上说法都不对2.弦长等于半径的弦所对的圆心角等于 .D60 当堂练习当堂练习3.在同圆中,圆心角AOB=2COD,则AB与CD的关系是()AA.AB=2CD B.ABCD C.ABCD,即CD2AB.ABCDEO圆心角相等弧相等弦相等弦、弧、圆心角的关系定理在同圆或等圆中应 用 提 醒要注意前提条件;要灵活转化.课堂小结课堂小结圆圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.
限制150内