圆锥曲线中的定点、定值、最值与范围问题.ppt
《圆锥曲线中的定点、定值、最值与范围问题.ppt》由会员分享,可在线阅读,更多相关《圆锥曲线中的定点、定值、最值与范围问题.ppt(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华第第3讲圆锥曲线中的定点、定值、最值讲圆锥曲线中的定点、定值、最值 与范围问题与范围问题真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华高高考考定定位位圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求.真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真真 题题
2、感感 悟悟真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华考考 点点 整整 合合1.定值、定点问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的一个点,就是要求的
3、定点.解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.2.圆锥曲线中最值问题主要是求线段长度的最值、三角形面积 的最值等.真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华3.求解圆锥曲线中的范围问题的关键是选取合适的变量建立目标函数和不等关系.该问题主要有以下三种情况:(1)距离型:若涉及焦点,则可以考虑将圆锥曲线定义和平面几何性质结合起来求解;若是圆锥曲线上的点到直线的距离,则可设出与已知直线平行的直线方程,再代入圆锥曲线方程中,用判别式等于零求得切点坐标,这个切点就是距离取得最
4、值的点,若是在圆或椭圆上,则可将点的坐标以参数形式设出,转化为三角函数的最值求解.真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华(2)斜率、截距型:一般解法是将直线方程代入圆锥曲线方程中,利用判别式列出对应的不等式,解出参数的范围,如果给出的只是圆锥曲线的一部分,则需要结合图形具体分析,得出相应的不等关系.(3)面积型:求面积型的最值,即求两个量的乘积的范围,可以考虑能否使用不等式求解,或者消元转化为某个参数的函数关系,用函数方法求解.真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感
5、悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华真题感悟真题感悟考点整合考点整合热点聚焦热点聚焦题型突破题型突破归纳总结归纳总结思维升华思维升华探究提高如果要解决的问题是一个定点问题,而题设条件又没有给出这个定点,那么,我们可以这样思考:由于这个定点对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定点,明确解决问题的目标,然后进行推理探究,这种先根据特殊情况确定定点,再进行一般性证明的方法就是由特殊到一般的方法.真题感悟真题感悟考点整合考点整合热点聚
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 中的 定点 范围 问题
限制150内