多自由度系统振动(c).ppt
《多自由度系统振动(c).ppt》由会员分享,可在线阅读,更多相关《多自由度系统振动(c).ppt(48页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、多自由度系统振动多自由度系统振动第四章第四章3 32023/2/211振动力学教学内容教学内容多自由度系统的动力学方程多自由度系统的动力学方程多自由度系统的动力学方程多自由度系统的动力学方程多自由度系统的自由振动多自由度系统的自由振动多自由度系统的自由振动多自由度系统的自由振动频率方程的零根和重根情形频率方程的零根和重根情形频率方程的零根和重根情形频率方程的零根和重根情形多自由度系统的受迫振动多自由度系统的受迫振动多自由度系统的受迫振动多自由度系统的受迫振动有阻尼的多自由度系统有阻尼的多自由度系统有阻尼的多自由度系统有阻尼的多自由度系统多自由度系统振动多自由度系统振动2023/2/212振动力
2、学小结:小结:作用力方程、位移方程和矩阵作用力方程、位移方程和矩阵多自由度系统振动多自由度系统振动/多自由度系统的动力学方程多自由度系统的动力学方程位移方程位移方程柔度矩柔度矩阵阵:F中的元素中的元素fij是使是使系系统仅统仅在第在第 j 个坐个坐标标受到受到单单位力位力 作用作用时时相相应应于第于第 i 个坐个坐标标上上产产生的位移生的位移.柔度矩柔度矩阵阵与与刚刚度矩度矩阵阵的关系:的关系:位移方程不适用于具有刚体自由度的系统。位移方程不适用于具有刚体自由度的系统。位移方程不适用于具有刚体自由度的系统。位移方程不适用于具有刚体自由度的系统。作用力方程作用力方程刚刚度度矩矩阵阵:K 中中的的
3、元元素素 kij 是是使使系系统统仅仅在在第第 j 个个坐坐标标上上产产生生单单位位位移而相应于第位移而相应于第 i 个坐标上所需施加的力。个坐标上所需施加的力。质质量量矩矩阵阵:M 中中的的元元素素 mij 是是使使系系统统仅仅在在第第 j 个个坐坐标标上上产产生生单单位加速度而相应于第位加速度而相应于第 i 个坐标上所需施加的力。个坐标上所需施加的力。2023/2/213振动力学小结:小结:耦合与坐标变换耦合与坐标变换多自由度系统振动多自由度系统振动/多自由度系统的动力学方程多自由度系统的动力学方程质量矩阵中出现耦合项称为质量矩阵中出现耦合项称为惯性耦合。惯性耦合。刚度矩阵或柔度矩阵中出现
4、耦合项称为刚度矩阵或柔度矩阵中出现耦合项称为弹性耦合。弹性耦合。不不出出现现惯惯性性耦耦合合时时,一一个个坐坐标标上上产产生生的的加加速速度度只只在在该该坐坐标标上上引引起起惯性力惯性力.耦合的表现形式取决于坐标的选择耦合的表现形式取决于坐标的选择耦合的表现形式取决于坐标的选择耦合的表现形式取决于坐标的选择 同一个系统选择两种不同的坐标同一个系统选择两种不同的坐标X 和和Y 有变换关系:有变换关系:坐标坐标坐标坐标X X下系统:下系统:下系统:下系统:坐标坐标坐标坐标Y Y 下系统:下系统:下系统:下系统:其中其中其中其中T T 是非奇异矩阵是非奇异矩阵是非奇异矩阵是非奇异矩阵如果恰巧如果恰巧
5、Y 是主坐标:是主坐标:对角阵对角阵这样的这样的T 是否存在?如何寻找?是否存在?如何寻找?不不出出现现弹弹性性耦耦合合时时,一一个个坐坐标标上上产产生生的的位位移移只只在在该该坐坐标标上上引引起起弹弹性恢复力性恢复力.2023/2/214振动力学当当T 矩阵非奇异时,称矩阵矩阵非奇异时,称矩阵A 与矩阵(与矩阵(TTAT)合同。合同。对于质量矩阵也如此。对于质量矩阵也如此。线性代数知线性代数知:合同矩阵具有相同的对称性质与相同的正定性质。合同矩阵具有相同的对称性质与相同的正定性质。对称性质:对称性质:若矩阵若矩阵A 对称,则(对称,则(TTAT)对称。)对称。证明:证明:矩阵矩阵A 对称,对
6、称,AAT则有:则有:(TTAT)TTTAT(TT)TTTAT正定性质:正定性质:若原来的刚度矩阵若原来的刚度矩阵K 正定,则(正定,则(TTKT)仍正定。)仍正定。因此坐标变换因此坐标变换X TY 不改变系统的正定性质。不改变系统的正定性质。多自由度系统振动多自由度系统振动/多自由度系统的动力学方程多自由度系统的动力学方程2023/2/215振动力学小结:小结:回顾:单自由度系统自由振动无阻尼自由振动回顾:单自由度系统自由振动无阻尼自由振动单自由度系统自由振动分析的一般过程:单自由度系统自由振动分析的一般过程:1、由工程装置建立自由振动的一般方程,并写出振动的标准方程;、由工程装置建立自由振
7、动的一般方程,并写出振动的标准方程;2、根据标准方程,建立本征方程并计算得到本征值;、根据标准方程,建立本征方程并计算得到本征值;3、根据本征值,写出标准方程的通解;、根据本征值,写出标准方程的通解;4、根据初始条件,计算标准方程的特解。、根据初始条件,计算标准方程的特解。单自由度系统自由振动分析的一般目标:单自由度系统自由振动分析的一般目标:1、求系统的固有角频率,即固有频率;、求系统的固有角频率,即固有频率;2、求解标准方程。、求解标准方程。2023/2/216振动力学多自由度系统的自由振动多自由度系统的自由振动 固有频率固有频率固有频率固有频率 模态模态模态模态 模态的正交性模态的正交性
8、模态的正交性模态的正交性 主质量和主刚度主质量和主刚度主质量和主刚度主质量和主刚度 模态叠加法模态叠加法模态叠加法模态叠加法 模态截断法模态截断法模态截断法模态截断法多自由度系统振动多自由度系统振动/多自由度系统的自由振动多自由度系统的自由振动2023/2/217振动力学多自由度系统的固有频率多自由度系统的固有频率作用力方程:作用力方程:自由振动方程:自由振动方程:在在考考虑虑系系统统的的固固有有振振动动时时,最最感感兴兴趣趣的的是是系系统统的的同同步步振振动动,即即系系统统在在各各个个坐坐标标上上除除了了运运动动幅幅值值不不相相同同外外,随时间变化的规律都相同的运动随时间变化的规律都相同的运
9、动。多自由度系统振动多自由度系统振动/多自由度系统的自由振动多自由度系统的自由振动和单自由度系统一样,自和单自由度系统一样,自由振动时系统将以固有频由振动时系统将以固有频率为振动频率。率为振动频率。2023/2/218振动力学多自由度系统振动多自由度系统振动/多自由度系统的自由振动多自由度系统的自由振动同同步步振振动动:系系统统在在各各个个坐坐标标上上除除了了运运动动幅幅值值不不相相同外,随时间变化的规律都相同的运动同外,随时间变化的规律都相同的运动。振动形式振动形式1振动形式振动形式2振动形式振动形式3三自由度系统三自由度系统思考:同步振动是不是解耦振动?思考:同步振动是不是解耦振动?202
10、3/2/219振动力学多自由度系统的固有频率多自由度系统的固有频率作用力方程:作用力方程:自由振动方程:自由振动方程:代表着振动的形状代表着振动的形状常数列向量常数列向量 多自由度系统振动多自由度系统振动/多自由度系统的自由振动多自由度系统的自由振动和单自由度系统一样,自和单自由度系统一样,自由振动时系统将以固有频由振动时系统将以固有频率为振动频率。率为振动频率。同同步步振振动动:系系统统在在各各个个坐坐标标上上除除了了运运动动幅幅值值不不相相同同外外,随随时时间间变化的规律都相同的运动。变化的规律都相同的运动。运动规律的时间函数运动规律的时间函数 2023/2/2110振动力学代入,并左乘代
11、入,并左乘 :常数:常数M 正定,正定,K 正定或半正定正定或半正定 对于非零列向量对于非零列向量 :令:令:对于半正定系统,有对于半正定系统,有 对于正定系统必有对于正定系统必有 多自由度系统振动多自由度系统振动/多自由度系统的自由振动多自由度系统的自由振动/固有频率固有频率2023/2/2111振动力学a、b、为常数为常数(1)正定系统)正定系统 只可能出现形如只可能出现形如 的同步运动。的同步运动。系统在各个坐标上都是按相同频率及初相位作简谐振动。系统在各个坐标上都是按相同频率及初相位作简谐振动。(2)半正定系统)半正定系统 可能出现形如可能出现形如 的同步运动。的同步运动。也可能出现形
12、如也可能出现形如 的同步运动的同步运动(不发生弹性变形(不发生弹性变形)。)。主振动主振动多自由度系统振动多自由度系统振动/多自由度系统的自由振动多自由度系统的自由振动/固有频率固有频率2023/2/2112振动力学首先讨论正定系统的主振动:首先讨论正定系统的主振动:M 正定,正定,K 正定正定主振动:主振动:正定系统:正定系统:将常数将常数 a 并入并入 中中代入振动方程:代入振动方程:有非零解的充分必要条件:有非零解的充分必要条件:特征方程特征方程 多自由度系统振动多自由度系统振动/多自由度系统的自由振动多自由度系统的自由振动/固有频率固有频率2023/2/2113振动力学解出解出 n 个
13、值,按升序排列为:个值,按升序排列为:第第 i 阶固有频率阶固有频率频率方程频率方程或特征多项式或特征多项式仅取决于系统本身的刚度、质量等物理参数。仅取决于系统本身的刚度、质量等物理参数。:基频。:基频。多自由度系统振动多自由度系统振动/多自由度系统的自由振动多自由度系统的自由振动/固有频率固有频率2023/2/2114振动力学采用位移方程求解固有频率:采用位移方程求解固有频率:位移方程:位移方程:柔度矩阵柔度矩阵自由振动的位移方程:自由振动的位移方程:主振动:主振动:代入,得:代入,得:特征值特征值多自由度系统振动多自由度系统振动/多自由度系统的自由振动多自由度系统的自由振动/固有频率固有频
14、率2023/2/2115振动力学采用位移方程求解固有频率:采用位移方程求解固有频率:位移方程:位移方程:柔度矩阵柔度矩阵自由振动的位移方程:自由振动的位移方程:主振动:主振动:代入,得:代入,得:特征值特征值特征方程:特征方程:特征根按降序排列:特征根按降序排列:多自由度系统振动多自由度系统振动/多自由度系统的自由振动多自由度系统的自由振动/固有频率固有频率2023/2/2116振动力学例:三自由度系统例:三自由度系统m2kmmk2kkx1x2x3多自由度系统振动多自由度系统振动/多自由度系统的自由振动多自由度系统的自由振动/固有频率固有频率2023/2/2117振动力学小结:小结:固有频率固
15、有频率多自由度系统振动多自由度系统振动/多自由度系统的自由振动多自由度系统的自由振动/固有频率固有频率主振动:主振动:正定系统:正定系统:代入振动方程:代入振动方程:有非零解的充分必要条件:有非零解的充分必要条件:特征方程特征方程 频率方程或特征多项式频率方程或特征多项式固有频率仅取决于系统本身的刚度、质量等物理参数。固有频率仅取决于系统本身的刚度、质量等物理参数。自由振动的位移方程:自由振动的位移方程:主振动:主振动:代入,得:代入,得:特征方程:特征方程:2023/2/2118振动力学多自由度系统的模态(主振型)多自由度系统的模态(主振型)正定系统:正定系统:主振动:主振动:特征值问题:特
16、征值问题:特征值特征值特征向量特征向量 n 自由度系统:自由度系统:(固有频率)(固有频率)(模态)(模态)一一对应一一对应代入,有:代入,有:多自由度系统振动多自由度系统振动/多自由度系统的自由振动多自由度系统的自由振动/模态模态第第i 阶模态特征阶模态特征值问题。值问题。振动的形状振动的形状2023/2/2119振动力学多自由度系统振动多自由度系统振动/多自由度系统的自由振动多自由度系统的自由振动n 个方程个方程奇次方程组奇次方程组当当 不是特征多项式重根时,上式不是特征多项式重根时,上式 n 个方程只有一个不独立个方程只有一个不独立.设最后一个方程不独立,把它划去,并且把含有设最后一个方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自由度 系统 振动
限制150内