人教版高中数学选修反证法(新人教B版)课件.ppt
《人教版高中数学选修反证法(新人教B版)课件.ppt》由会员分享,可在线阅读,更多相关《人教版高中数学选修反证法(新人教B版)课件.ppt(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.2.2 反证法反证法一反证法一反证法证明命题证明命题“设设p为正整数,如果为正整数,如果p2是偶数是偶数,则则p也是偶数也是偶数”,我们可以不去直接证明,我们可以不去直接证明p是偶数,而是否定是偶数,而是否定p是偶数,然是偶数,然后得到矛盾,从而肯定后得到矛盾,从而肯定p是偶数。具体证明步骤如下:是偶数。具体证明步骤如下:假设假设p不是偶数,可令不是偶数,可令p=2k+1,k为整数。为整数。可得可得p2=4k2+4k+1,此式表明,此式表明,p2是奇数,这与假设矛盾,是奇数,这与假设矛盾,因此假设因此假设p不是偶数不成立,从而证明不是偶数不成立,从而证明p为偶数。为偶数。一般地,由证明一般
2、地,由证明pq转向证明:转向证明:t与假设矛盾,或与某个真命题矛盾,从而判定与假设矛盾,或与某个真命题矛盾,从而判定为假,为假,推出推出q为真的方法,为真的方法,叫做反证法叫做反证法。例例1证明证明不是有理数。不是有理数。证明:假定证明:假定是有理数,则可设是有理数,则可设,其中其中p,q为互为互质的正整数,质的正整数,把把两边平方得到,两边平方得到,2q2=p2,式表明式表明p2是偶数,所以是偶数,所以p也是偶数,于是令也是偶数,于是令p=2l,l是是正整数,代入正整数,代入式,式,得得q2=2l2,式表明式表明q2是偶数,所以是偶数,所以q也是偶数,这样也是偶数,这样p,q都有公因都有公因
3、数数2,这与,这与p,q互质矛盾,互质矛盾,因此因此是有理数不成立,于是是有理数不成立,于是是无理数是无理数.例例2证明质数有无穷多个。证明质数有无穷多个。证明:假定质数只有有限多个,设全体质数为证明:假定质数只有有限多个,设全体质数为p1,p2,p3,pn,令令p=p1p2p3pn+1,显然,显然p不含因数不含因数p1,p2,p3,pn,p要么是质数,要么含有除要么是质数,要么含有除p1,p2,p3,pn之外的质之外的质因数。因数。因此质数只有有限多个不成立,于是质数有无穷多个。因此质数只有有限多个不成立,于是质数有无穷多个。从上述两例看出,反证法不是直接去证明结论,而是从上述两例看出,反证
4、法不是直接去证明结论,而是先否定结论,在否定结论的基础上,运用演绎推理,导先否定结论,在否定结论的基础上,运用演绎推理,导出矛盾,从而肯定结论的真实性。出矛盾,从而肯定结论的真实性。二反证法的主要步骤二反证法的主要步骤(1)反设反设:反设是反证法的基础,为了正确地作出反设,掌握一反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是些常用的互为否定的表述形式是有必要的,例如:是/不不是;存在是;存在/不存在;平行于不存在;平行于/不平行于;垂直于不平行于;垂直于/不垂直于;不垂直于;等于等于/不等于;大不等于;大(小小)于于/不大不大(小小)于;都是于;都
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 高中数学 选修 反证法 新人 课件
限制150内