圆锥曲线与方程复习课课件.pptx
《圆锥曲线与方程复习课课件.pptx》由会员分享,可在线阅读,更多相关《圆锥曲线与方程复习课课件.pptx(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第1页/共56页【核心解读】1.椭圆中的特征三角形a2=c2+b2,ab0,a最大,其中a,b,c构成如图的直角三角形,我们把它称作“特征三角形”.第2页/共56页2.椭圆的焦点三角形设P为椭圆 (ab0)上任意一点(不在x轴上),F1,F2为焦点且F1PF2=,则PF1F2为焦点三角形.(1)焦点三角形的面积(2)焦点三角形的周长L=2a+2c.第3页/共56页3.双曲线渐近线的设法技巧(1)由双曲线标准方程求其渐近线方程时,最简单实用的办法是:把标准方程中的1换成0,即可得到两条渐近线的方程.如双曲线 (a0,b0)的渐近线方程为 (a0,b0),即 双曲线 (a0,b0)的渐近线方程为
2、(a0,b0),即(2)如果双曲线的渐近线为 时,它的双曲线方程可设为 (0).第4页/共56页4.共轭双曲线(1)双曲线与它的共轭双曲线有相同的渐近线.(2)双曲线与它的共轭双曲线有相同的焦距.(3)与 具有相同渐近线的双曲线系方程为5.抛物线方程的设法对顶点在原点,对称轴为坐标轴的抛物线方程,一般可设为y2=ax(a0)或x2=ay(a0).第5页/共56页6.抛物线的焦点弦问题抛物线过焦点F的弦长|AB|的一个重要结论.(1)y2=2px(p0)中,|AB|=x1+x2+p.(2)y2=-2px(p0)中,|AB|=-x1-x2+p.(3)x2=2py(p0)中,|AB|=y1+y2+p
3、.(4)x2=-2py(p0)中,|AB|=-y1-y2+p.第6页/共56页主题一 圆锥曲线的定义及应用【典例1】(2013 合肥高二检测)双曲线16x2-9y2=144的左、右两焦点分别为F1,F2,点P在双曲线上,且|PF1|PF2|=64,求PF1F2的面积.第7页/共56页【自主解答自主解答】双曲线方程双曲线方程16x16x2 2-9y-9y2 2=144=144化简为化简为即即a a2 2=9,b=9,b2 2=16,=16,所以所以c c2 2=25,=25,解得解得a=3,c=5,a=3,c=5,所以所以F F1 1(-5,0),F(-5,0),F2 2(5,0).(5,0).
4、设设|PF|PF1 1|=m,|PF|=m,|PF2 2|=n,|=n,由双曲线的定义知由双曲线的定义知|m-n|=2a=6,|m-n|=2a=6,又已知又已知m mn=64,n=64,第8页/共56页在在PFPF1 1F F2 2中,由余弦定理知中,由余弦定理知cosFcosF1 1PFPF2 2=所以所以F F1 1PFPF2 2=60,=60,所以所以=所以所以PFPF1 1F F2 2的面积为的面积为第9页/共56页【延伸探究】本题条件“|PF1|PF2|=64”改为PF1PF2,则PF1F2的面积是多少?【解析解析】双曲线双曲线16x16x2 2-9y-9y2 2=144,=144,
5、化简为化简为即即a a2 2=9,b=9,b2 2=16,=16,所以所以c c2 2=25,=25,即即a=3,c=5,a=3,c=5,所以所以|F|F1 1F F2 2|=10.|=10.记记|PF|PF1 1|=m,|PF|=m,|PF2 2|=n.|=n.第10页/共56页因为因为PFPF1 1PFPF2 2,所以有,所以有m m2 2+n+n2 2=(2c)=(2c)2 2=100,=100,由双曲线的定义得由双曲线的定义得|m-n|=2a=6,|m-n|=2a=6,所以所以(m-n)(m-n)2 2=36,=36,即即m m2 2+n+n2 2-2m-2mn=36,n=36,因此有
6、因此有m mn=32,n=32,所以所以第11页/共56页【方法技巧方法技巧】“回归定义回归定义”解题的三点应用解题的三点应用应用一:应用一:在求轨迹方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的定义,写出所求的轨迹方程;在求轨迹方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的定义,写出所求的轨迹方程;应用二:应用二:涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决;涉及椭圆、双曲线上的点与两个定点构成的三角形问题时,常用定义结合解三角形的知识来解决;应用三:应用三:在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离
7、,结合几何图形,利用几何意义去解决在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.第12页/共56页【补偿训练】(2014长沙高二检测)过双曲线C:(a0,b0)的左焦点F1(-2,0),右焦点F2(2,0)分别作x轴的垂线,交双曲线的两渐近线于A,B,C,D四点,且四边形ABCD的面积为(1)求双曲线C的标准方程.(2)设P是双曲线C上一动点,以P为圆心,PF2为半径的圆交射线PF1于点M,求点M的轨迹方程.第13页/共56页【解析解析】(1)(1)由由 解得解得 由双曲线及其渐近线的对由双曲线及其渐近线的对称性知四边形称性知四边形A
8、BCDABCD为矩形,故四边形为矩形,故四边形ABCDABCD的面积为的面积为 所以所以 结合结合c=2c=2且且c c2 2=a=a2 2+b+b2 2得:得:a=1,a=1,所以双曲线所以双曲线C C的标准方程为的标准方程为(2)P(2)P是双曲线是双曲线C C上一动点,故上一动点,故|PF|PF1 1|-|PF|-|PF2 2|=2,|=2,又又M M点在射线点在射线PFPF1 1上,且上,且|PM|=|PF|PM|=|PF2 2|,故,故|F|F1 1M|=|PFM|=|PF1 1|-|PM|=|PF|-|PM|=|PF1 1|-|PF|-|PF2 2|=2,|=2,所以点所以点M M
9、的轨迹是以的轨迹是以F F1 1为圆心,半径为为圆心,半径为2 2的圆,其轨迹方程为的圆,其轨迹方程为(x+2)(x+2)2 2+y+y2 2=4.=4.第14页/共56页主题二 圆锥曲线的方程【典例2】求与椭圆 有相同的焦点,且离心率为 的椭圆的标准方程.【自主解答自主解答】因为因为所以所求椭圆的焦点为所以所求椭圆的焦点为设所求椭圆的方程为设所求椭圆的方程为 (a(ab b0),0),因为因为 所以所以a=5,a=5,所以所以b b2 2=a=a2 2-c-c2 2=20,=20,所以所求椭圆的方程为所以所求椭圆的方程为第15页/共56页【方法技巧方法技巧】处理圆锥曲线问题的策略处理圆锥曲线
10、问题的策略(1)(1)待定系数法求圆锥曲线的步骤待定系数法求圆锥曲线的步骤:定位置定位置:先确定圆锥曲线焦点的位置先确定圆锥曲线焦点的位置,从而确定方程的类型从而确定方程的类型;设方程设方程:根据方程的类型根据方程的类型,设出方程设出方程;求参数求参数:利用已知条件利用已知条件,求出求出a,ba,b或或p p的值的值;得方程得方程:代入所设方程代入所设方程,从而得出所求方程从而得出所求方程.第16页/共56页(2)(2)焦点位置不确定的曲线方程的设法焦点位置不确定的曲线方程的设法:椭圆方程可设为椭圆方程可设为mxmx2 2+ny+ny2 2=1(m0,n0,mn);=1(m0,n0,mn);双
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 方程 复习 课件
限制150内