2023年勾股定理教学设计_勾股定理教学设计1_1.docx
《2023年勾股定理教学设计_勾股定理教学设计1_1.docx》由会员分享,可在线阅读,更多相关《2023年勾股定理教学设计_勾股定理教学设计1_1.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年勾股定理教学设计_勾股定理教学设计1 勾股定理教学设计由我整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“勾股定理教学设计1”。 5.2勾股定理 于冬梅 2023年6月21日 【说明】这篇教学设计是在聊城市第三届双十佳评选过程中,东昌府区教研室冯树军老师亲自设计的,对我们的教学设计、备课思路有极高的指导意义。提供出来,与大家共勉! 5.2勾股定理 教材分析 勾股定理选自九年制义务教育课程标准实验教科书(青岛版)八年级上册.教学内容是探索直角三角形三边的关系及其初步应用所得结论.勾股定理揭示了直角三角形三边之间的数量关系,它是解几何中有关线段计算问题的重要依据,也是以后学习解直角
2、三角形的重要工具,在教材中起到承上启下的作用.勾股定理不仅在数学中,而且在其他自然学科及现实生活领域中也被广泛应用.本节课注重学生的自主探索,着重让学生依据自己的体验和数学说理,认识勾股定理,并学会运用这一奇妙的结论解决相应的一些问题.学情分析 在本节课以前,学生已经学习了有关三角形的一些知识,如三角形的三边不等关系,也学过不少利用图形面积来探求数式运算规律的例子,如探求乘法公式、单项式乘多项式法则、多项式乘多项式法则等.在学生这些原有的认知水平基础上,利用图形面积探求直角三角形的又一重要性质勾股定理,让学生的知识形成知识链,让学生已具有的数学思维能力得以充分发挥和发展.教学目标 1.经历勾股
3、定理的探索过程,感受数形结合的思想,获得数学活动的经验; 2.掌握勾股定理,会用勾股定理解决一些与直角三角形有关的问题。3.尝试用多种办法验证勾股定理,体验解决问题策略的多样性。教学重点:勾股定理的证明与应用。教学难点: 勾股定理在生活中的应用。 教具准备: 硬纸板若干,剪刀,直尺,三角板,相关课件 教学过程 屏幕展示2023 年在北京召开的国际数学家大会的会标,引出问题:同学们知道它的来历吗?它来自1700多年前我国古代数学家赵爽证明勾股定理时所用的弦图,弦图中隐含了直角三角形三边之间的奇妙的关系。什么关系呢?今天我们就沿着前人走过的路也来探索一次。由此引入新课,并简介勾股定理历史,培养学生
4、的民族自豪感.一、创设情境 激发兴趣 我国古代数学家早就发现直角三角形三边的平方之间存在一种特殊的数量关系,什么关系呢?下面我们就分组探讨.分组测量学生常用的直角三角板三边的长度并进行平方,观察两直角边的平方和与斜边的平方之间有何关系?由此引出猜想:直角三角形两直角边的平方和等于斜边的平方.【通过测量三角板三边的长,引发学生的猜想,增加学生的求知欲和研究的趣味性.】 二、自主构建,合作探究 教师给同学们提出以下要求: 1同桌之间任意确定两条线段的长,并以这两条线段长为直角边,两人用硬纸板各剪4个同样大小的直角三角形。 2同桌之间,一位同学剪两个正方形,边长分别为直角三角形的两条直角边长;另一名
5、同学剪一个正方形,边长等于直角三角形的斜边长。 3设直角三角形两直角边分别为a、b,斜边为c,每人画一个边长为(a+b)的正方形。请同学们将自己剪的图形拼在自己画的正方形中。 学生完成拼图后,投影演示拼图。学生若有困难,可仿照投影图拼图。(或图5-1) 教师提出问题:同桌之间将你们拼成的正方形放在一起进行比较,看看有什么发现?可得到什么结论?(在此留给学生思考的空间与交流的时间。) 对有困难的学生可作提示:正方形面积怎么计算?三个正方形的边长各是多少?引导学生由“形”向“数”转化,渗透数形结合思想。 三、展示交流、归纳发现 实际教学中,学生的说法不尽相同,要鼓励学生各抒己见: 生一:第一个正方
6、形的面积可表示为a2+b2+2ab;第二个正方形的面积可表示为c2+2ab;两个大正方形面积相同。所以整理得到a2+b2=c2。 生二:左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形,于是 a2+b2=c2。 师生共同归纳勾股定理:直角三角形两直角边的平方和等于斜边的平方。 【充分引导学生利用直观教具,进行拼图实验,激发学生的探索欲望。让学生通过自己的操作和观察思考,在动手操作中放手让学生思考、讨论、合作、交流,探究解决问题的方法,亲自发现勾股定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 勾股定理 教学 设计 _1
限制150内