计算机控制技术实验报告(完整版).pdf
《计算机控制技术实验报告(完整版).pdf》由会员分享,可在线阅读,更多相关《计算机控制技术实验报告(完整版).pdf(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、前 言 本指导书是配合自动化专业本科生专业课计算机控制技术的课堂教学而编写的实验教材,通过实验的验证能够使学生了解和掌握计算机控制的硬件技术和软件编程方法。本书共设计了七大类实验,第一类中包含过程通道和数据采集处理方面的几个内容;第二类为数字 PWM 发生器和直流电机调速控制的开环实验;第三类包含几种数字 PID 闭环控制实验;第四类中有两种数字调节器直接设计方法的实验;第五类是一个温度控制系统;第六类是随动系统实验;第七类是过程控制系统的研究;实验五至实验七的内容是带有被控对象的控制系统。七个实验的全部学时大于计划学时,教师和学生对所做的实验内容可以选择以满足实验计划学时为准。通过实验学生巩
2、固了课堂教学的内容,也为今后实际工作打下了一定技术基础。本指导书由王尚君、毛一心老师共同编写,穆志纯教授进行了严格的审阅工作。由于计算机性能的快速提高,计算机控制的技术手段也在不断出新,书中难免存在不足之处,敬请读者批评指正。编者 2007年 10 月 目 录 前 言.1 目 录.2 实验一 过程通道和数据采集处理.4 一、输入与输出通道.4 1.AD 转换实验.5 2.DA 转换实验.7 二、信号的采样与保持.9 1.零阶保持实验.9 2.直线插值实验 *.11 3.二次曲线插值实验 *.11 三、数字滤波.15 1.一阶惯性实验.16 2.四点加权实验 *.16 实验二 开环系统的数字程序
3、控制.19 数字 PWM 发生器和直流电机调速控制.19 一、实验目的.19 二、实验内容.19 三、实验所用仪表及设备.19 四、实验原理及步骤.20 五、思考题.21 六、实验报告内容及要求.21 实验三 数字 PID 闭环控制.22 数字 PID 控制算法.22 积分分离法 PID 控制.23 带死区的 PID 控制 *.27 简易工程法整定 PID 参数.30 扩充临界比例度法.30 扩充响应曲线法.32 实验四 数字调节器直接设计方法.36 最小拍控制系统.36 一、实验目的.36 二、实验所用仪表及设备.36 三、实验原理及内容.36 有纹波最小拍控制系统.37 无纹波最小拍控制系
4、统.38 四、实验步骤.40 五、思考题.41 六、实验报告内容及要求.41 实验一 过程通道和数据采集处理 为了实现计算机对生产过程或现场对象的控制,需要将对象的各种测量参数按要求转换成数字信号送入计算机;经计算机运算、处理后,再转换成适合于对生产过程进行控制的量。所以在微机和生产过程之间,必须设置信息的传递和变换的连接通道,该通道称为过程通道。它包括模拟量输入通道、模拟量输出通道、数字量输入通道、数字量输出通道。模拟量输入通道:主要功能是将随时间连续变化的模拟输入信号变换成数字信号送入计算机,主要有多路转化器、采样保持器和A/D 转换器等组成。模拟量输出通道:它将计算机输出的数字信号转换为
5、连续的电压或电流信号,主要有D/A 转换器和输出保持器组成。数字量输入通道:控制系统中,以电平高低和开关通断等两位状态表示的信号称为数字量,这些数据可以作为设备的状态送往计算机。数字量输出通道:有的执行机构需要开关量控制信号(如步进电机),计算机可以通过I/O 接口电路或者继电器的断开和闭合来控制。输入与输出通道 本实验教程主要介绍以A/D 和D/A 为主的模拟量输入输出通道,A/D 和D/A 的芯片非常多,这里主要介绍人们最常用的ADC0809 和TLC7528。一、实验目的 1学习A/D 转换器原理及接口方法,并掌握ADC0809 芯片的使用 2学习D/A 转换器原理及接口方法,并掌握TL
6、C7528 芯片的使用 二、实验内容 1编写实验程序,将5V +5V 的电压作为ADC0809 的模拟量输入,将转换所得的8 位数字量保存于变量中。2编写实验程序,实现D/A 转换产生周期性三角波,并用示波器观察波形。三、实验设备 PC 机一台,TD-ACC+实验系统一套,i386EX 系统板一块 四、实验原理与步骤 1A/D 转换实验 ADC0809 芯片主要包括多路模拟开关和A/D 转换器两部分,其主要特点为:单电源供电、工作时钟CLOCK 最高可达到1200KHz、8 位分辨率,8 个单端模拟输入端,TTL 电平兼容等,可以很方便地和微处理器接口。TD-ACC+教学系统中的ADC0809
7、 芯片,其输出八位数据线以及CLOCK 线已连到控制计算机的数据线及系统应用时钟1MCLK(1MHz)上。其它控制线根据实验要求可另外连接 (A、B、C、STR、/OE、EOC、IN0IN7)。根据实验内容的第一项要求,可以设计出如图 所示的实验线路图。单次阶跃 模数转换单元 控制计算机 图 上图中,AD0809 的启动信号“STR”是由控制计算机定时输出方波来实现的。“OUT1”表示386EX 内部1定时器的输出端,定时器输出的方波周期定时器时常。图中ADC0809 芯片输入选通地址码A、B、C 为“1”状态,选通输入通道IN7;通过单次阶跃单元的电位器可以给A/D 转换器输入5V +5V
8、的模拟电压;系统定时器定时1ms 输出方波信号启动A/D 转换器,并将A/D 转换完后的数据量读入到控制计算机中,最后保存到变量中。参考流程:主程序 图 参考程序:请参照随机软件中的example 目录中1-1-1 文件 实验步骤与结果:(1)打开联机操作软件,参照流程图,在编辑区编写实验程序。检查无误后编译、链接。(2)按图 接线(注意:图中画“o”的线需用户自行连接),连接好后,请仔细检查,无错误后方可开启设备电源。(3)装载完程序后,系统默认程序的起点在主程序的开始语句。用户可以自行设置程序起点,可先将光标放在起点处,再通过调试菜单项中设置起点或者直接点击设置起点图标,即可将程序起点设在
9、光标处。(4)加入变量监视,具体步骤为:打开“设置”菜单项中的“变量监视”窗口或者直接点击“变量监视”图标,将程序中定义的全局变量“AD0AD9”加入到变量监视中。在查看菜单项中的工具栏中选中变量区或者点击变量区图标,系统软件默认选中寄存器区,点击“变量区”可查看或修改要监视的变量。(5)在主程序JMP AGAIN 语句处设置断点。具体操作为:先将光标置于要设断点的语句,然后在调试菜单项中选择“设置断点/删除断点(B)”或者直接点击“设置断点/删除断点”图标,即可在本语句设置或删除断点。(6)打开虚拟仪器菜单项中的万用表选项或者直接点击万用表图标,选择“电压档”用示波器单元中的“CH1”表笔测
10、量图 中的模拟输入电压“Y”端,点击虚拟仪器中的“运行”按钮,调节图 中的单次阶跃中的电位器,确定好模拟输入电压值。-5V (7)做好以上准备工作后,运行程序(打开“调试”菜单项中的“运行到断点/运行”或者点击“运行到断点/运行”图标),程序将在断点处停下,查看变量“AD0AD9”的值,取平均值记录下来,改变输入电压并记录,最后填入表 中。表中“()”中的数字量供参考。表 模拟输入电压(V)对应的数字量(H)5 (00)(00)4 (1A)(18)3 (33)(31)2 (4C)(4C)1 (66)(66)0 (80)(7F)1 (99)99 2 (B3)B3 3 (CD)CD 4 (E6)E
11、6 5 (FF)FF 得到的实验实际值:模拟输入电压(V)对应的数字量(H)00 17 32 4D 65 7F 99、9A B6 D0、D1 E7 FF 本节实验仅仅就软件的相关功能做简单介绍,该软件的具体操作与说明请详见本实验教程的“第1 部分第4 章联机软件说明”。2D/A 转换实验 本实验采用TLC7528 芯片,它是8 位、并行、两路、电压型输出数模转换器。其主要参数如下:转换时间100ns,满量程误差1/2 LSB,参考电压10V +10V,供电电压+5V+15V,输入逻辑电平与TTL 兼容。实验平台中的TLC7528 的八位数据线、写线和通道选择控制线已接至控制计算机的总线上。片选
12、线预留出待实验中连接到相应的I/O 片选上,具体如图。实验步骤及结果:(1)参照流程图 编写实验程序,检查无误后编译、链接并装载到控制计算机中。(2)运行程序,用示波器观测输出波形。图 以上电路是TLC7528 双极性输出电路,输出范围5V +5V。“W101”和“W102”分别为A 路和B 路的调零电位器,实验前先调零,往TLC7528 的A 口和B 口中送入数字量80H,分别调节“W101”和“W102”电位器,用万用表分别测“OUT1”和“OUT2”的输出电压,应在0mV 左右。参考流程:主程序 图 参考程序:请参照随机软件中的example 目录中的1-1-2 文件。信号的采样与保持
13、一、实验目的 1熟悉信号的采样和保持过程 2学习和掌握香农(采样)定理 3学习用直线插值法和二次曲线插值法还原信号 二、实验内容 1编写程序,实现信号通过A/D 转换器转换成数字量送到控制计算机,计算机再把数字量送到D/A 转换器输出。2编写程序,分别用直线插值法和二次曲线插值法还原信号。三、实验设备 PC 机一台,TD-ACC+实验系统一套,i386EX 系统板一块 四、实验原理与步骤 零阶保持 香农(采样)定理:若对于一个具有有限频谱(|W|5Wmax)利用式-1 在点(X0,Y0)和(X1,Y1)之间插入点(X,Y)Y=Y0+K(X X0)式 其中:K=0101XXYY X1X0 为采样
14、间隔,Y1Y0 分别为X1 和X0 采样时刻的AD 采样值。二次曲线插值法(取 Ws3Wmax):Y=Y0+(X X0)K1+K2(X X1)式 其中K1=0101XXYY,K2=12)01010202(XXXXYYXXYY (2)实验线路图设计 为了验证上面的原理,可以设计如下的实验线路图,图中画“”的线需用户在实验中自行接好,其它线系统已连好。上图中,控制计算机“OUT1”表示386EX 内部1定时器的输出端,定时器输出的方波周期定时器时常,“IRQ7”表示386EX 内部主片8259 的7 号中断,用作采样中断。这里,正弦波单元的“OUT”端输出周期性正弦波信号,通过模数单元的“IN7”
15、端输入,系统用定时器作为基准时钟(初始化为10ms),定时采集“IN7”端的信号,并通过控制机算计读取转换完后的数字量,再送到数模转换单元,由“OUT1”端输出相应的模拟信号。采样周期T=TK 10ms,TK 的范围为01 FFH。(3)参考程序流程图设计 实验参考程序:直线插值法参照随机软件中的example 目录中的1-2-2 文件,二次曲线插值法请参照随机软件中的 example 目录中的 文件。实验步骤及结果 1.采样与保持(1)参考流程图 编写零阶保持程序,编译、链接。(2)按照实验线路图 接线,检查无误后开启设备电源。(3)用示波器的表笔测量正弦波单元的“OUT”端,调节正弦波单元
16、的调幅、调频电位器及拨动开关,使得“OUT”端输出幅值为3V,周期1S 的正弦波。得到的实验波形如下所示:(4)加载程序到控制机中,将采样周期变量“Tk”加入到变量监视中,运行程序,用示波器的另一路表笔观察数模转换单元的输出端“OUT1”。“OUT1”端的参考波形如图 所示。(5)增大采样周期,当采样周期 时,即Tk32H 时,运行程序并观测数模转换单元的输出波形应该失真,记录此时的采样周期,验证香农定理。Tk=34H,得到的波形如下所示:*2.信号的还原(1)参考流程图 分别编写直线插值和二次曲线插值程序,并编译、链接。(2)按照线路图 接线,检查无误后,开启设备电源。调节正弦波单元的调幅、
17、调频电位器,使正弦波单元输出幅值为3V,周期1S 的正弦波。(3)分别装载并运行程序,运行程序前将采样周期变量Tk 加入到变量监视中,方便实验中观察和修改。用示波器观察数模转换单元的输出,和零阶保持程序的运行效果进行比较。零阶保持 二次曲线插值 直线插值 图 由上述结果可以看出:在采样频率 Ws=10Wmax 时,用三种方法还原信号,直线插值要好于零阶保持,二次曲线插值好于直线插值。采用合理的插值算法可以降低信号的失真度,在允许的范围内可以有效地降低对采样频率的要求。直线插值:二次曲线插值:(4)在(3)中是在同一采样频率下,比较三种方法还原信号的效果,实验中也可比较一种还原方法在不同采样频率
18、下的效果。对于零阶保持来说:当采样频率信号频率的10 倍时,即Tk101 1S,Tk0AH信号的还原效果较好。对于直线插值来说:当采样频率信号频率的5 倍时,即Tk15 1S,Tk14H信号的还原效果较好。对于二次曲线插值来说:当采样频率信号频率的3 倍时,即Tk13 1S,Tk21H信号的还原效果较好。数字滤波 一、实验目的 1.学习和掌握一阶惯性滤波 2.学习和掌握四点加权滤波 二、实验内容 分别编写一阶惯性滤波程序和四点加权滤波程序,将混合干扰信号的正弦波送到数字滤波器,并用示波器观察经过滤波后的信号。三、实验设备 PC 机一台,TD-ACC+实验系统一套,i386EX 系统板一块 四、
19、实验原理与步骤 一般现场环境比较恶劣,干扰源比较多,消除和抑制干扰的方法主要有模拟滤波和数字滤波两种。由于数字滤波方法成本低、可靠性高、无阻抗匹配、灵活方便等特点,被广泛应用,下面是一个典型数字滤波的方框图:控制 计算机 模数转换 IN7 数模转换 OUT 1滤波器算法设计 一阶惯性滤波:相当于传函11S的数字滤波器,由一阶差分法可得近似式 YK=(1 a)XK+(a)YK 1 XK:当前采样时刻的输入 YK:当前采样时刻的输出 YK-1:前一采样时刻的输出 T:采样周期,1-a=T 四点加权滤波算法为:YK=A1XK+A2XK-1+A3XK-2+A4XK-3(式中41iA1=1)XK:当前采
20、样时刻的输入 XK-1:前一采样时刻的输入 YK:当前采样时刻的输出 2参考流程图:实验中的参数:1a、a、A1、A2、A3、A4 为十进制2 位小数(BCD 码),取值范围:,只须对应存入0099。程序中将其转换成二进制小数,再按算式进行定点小数运算。实验参考程序:一阶惯性请参照随机软件中的example 目录中的1-3-1,四点加权参照。3实验线路图:图中画“”的线需用户在实验中自行接好,运放单元需用户自行搭接。上图中,控制计算机的“OUT1”表示386EX 内部1定时器的输出端,定时器输出的方波周期定时器时常,“IRQ7”表示386EX 内部主片8259 的7 号中断,用作采样中断。电路
21、中用RC 电路将S 端方波微分,再和正弦波单元产生的正弦波叠加。注意R 点波形不要超过5V,以免数字化溢出。计算机对有干扰的正弦信号R 通过模数转换器采样输入,然后进行数字滤波处理,去除干扰,最后送至数模转换器变成模拟量C 输出。实验步骤及结果 1.参照流程图分别编写一阶惯性和四点加权程序,检查无误后编译、链接。2.按图 接线,检查无误后开启设备电源。调节正弦波使其周期约为2S,调信号源单元使其产生周期为100ms 的干扰信号(从“NC”端引出),调节接线图中的两个47K 电位器使正弦波幅值为3V,干扰波的幅值为。3.分别装载并运行程序,运行前可将“TK”加入到变量监视中,方便实验中观察和修改
22、。用示波器观察R 点和C 点,比较滤波前和滤波后的波形。一阶惯性:Tk=01 Tk=08 四点加权:Tk=01H Tk=4.如果滤波效果不满意,修改参数,再运行程序,观察实验效果。参数 Tk 16进制 Ts(ms)1-a a A1 A2 A3 A4 滤波前后正弦幅值比 滤波前后干扰幅值比 项目 一阶惯性 01 5 10 90 3/3 08 40 10 90 3/0 四点加权 01 5 30 30 20 20 3/3 08 40 30 30 20 20 3/3 不适当的应用数字滤波反而会降低控制效果,甚至造成系统不稳定。在实际应用中,对于参数变化缓慢的(如温度)可用惯性滤波,对于参数变化快的信号
23、可用加权平均滤波。实验二 开环系统的数字程序控制 数字 PWM 发生器和直流电机调速控制 一、实验目的 掌握脉宽调制(PWM)的方法。二、实验内容 用程序实现脉宽调制,并对直流电机进行调速控制。三、实验设备 PC 机一台,TD-ACC+实验系统一套,i386EX 系统板一块 四、实验原理与步骤 1PWM(Pulse Width Modulation)简称脉宽调制(见图。即,通过改变输出脉冲的占空比,实现对直流电机进行调速控制。VH VL 图 2实验线路图:图中画“”的线需用户在实验中自行接好,其它线系统已连好。图中,“DOUT0”表示386EX 的I/O 管脚,输出PWM 脉冲经驱动后控制直流
24、电机。图 本实验中,由系统产生1ms 的定时中断。在中断处理程序中完成PWM 脉冲输出。最后通过控制计算机的数字量输出端DOUT0 引脚来模拟PWM 输出,并经达林顿管输出驱动直流电机,实现脉宽调制。3参考流程图 实验参考程序:请参照随机软件中的example 目录中的2-2-1。实验步骤 1参考实验线路图的说明及流程图,编写相应的主程序及PWM 子程序,检查无误后编译、链接。2按图 接线,检查无误后开启设备的电源。3装载程序,将全局变量TK(PWM 周期)和PWM_T(占空比)加入监视,以便实验过程中修改。4运行程序,观察电机运行情况。5终止程序运行,加大脉冲宽度,即将占空比PWM_T 变大
25、,重复第3 步,再观察电机的运行情况,此时电机转速应加快。电机每转动一圈,“HR”端(霍尔元件的输出端)就会输出一个脉冲,用虚拟仪器中示波器的一路表笔测“HR”端的脉冲信号可算出电机此时的转速。Tk=0C8H;PWM_T=14H;FPWM=01H;HR 图 6 注意:在程序调试过程中,有可能随时停止程序运行,此时DOUT0 的状态应保持上次的状态。当DOUT0 为1 时,直流电机将停止转动;当DOUT0 为0 时,直流电机将全速转动,如果长时间直流电机处于全速转动,可能会导致电机单元出现故障,所以在停止程序运行时,最好将连接DOUT0 的排线拔掉或按系统复位键。五、实验思考题 本实验中是通过改
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计算机控制 技术 实验 报告 完整版
限制150内