《高中必修一数学题.pdf》由会员分享,可在线阅读,更多相关《高中必修一数学题.pdf(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高中数学必修一测试题及答案 一.选择题 410=40 分 1.若集合8,7,6A,则满足ABA的集合 B 的个数是 B.2 2.如果全集6,5,4,3,2,1U且2,1)(BCAU,5,4)()(BCACUU,6 BA,则 A 等于 A.2,1 B.6,2,1 C.3,2,1 D.4,2,1 3.设,2|RxyyMx,|2RxxyyN,则 A.)4,2(NM B.)16,4(),4,2(NM C.NM D.NM 4.已知函数)3(log)(22aaxxxf在),2上是增函数,则实数a的取值范围是 A.)4,(B.4,4(C.),2()4,(D.)2,4 5.32)1(2mxxmy是偶函数,则)
2、1(f,)2(f,)3(f的大小关系为 A.)1()2()3(fff B.)1()2()3(fff C.)1()3()2(fff D.)2()3()1(fff 6.函数)(xfy 在区间),(ba)(ba 内有零点,则 A.0)()(bfaf B.0)()(bfaf C.0)()(bfaf D.)()(bfaf的符号不定 7.设)(xf为奇函数且在)0,(内是减函数,0)2(f,且0)(xfx的解集为 A.),2()0,2(B.)2,0()2,(C.),2()2,(D.)2,0()0,2(8.已知函数0,30,log)(2xxxxfx,则)41(ff的值是 A.91 B.9 C.9 D.91
3、9.已知Aba 53,且211ba,则 A 的值是 B.15 C.15 10.设10 a,在同一直角坐标系中,函数xay与)(logxya的图象是 二.填空题 44=16 分 11.方程2)23(log)59(log22xx的解是;12.函数xay 0a,且1a在2,1 上的最大值比最小值大2a,则a的值是;13.某服装厂生产某种大衣,日销售量x件与货款 P 元/件之间的关系为 P=160 x2,生产x件的成本xR30500元,则该厂日产量在时,日获利不少于 1300 元;14.若函数xy2的定义域是0|xx,则它的值域是1|yy;若函数xy1的定义域是2|xx,则它的值域是21|yy;若函数
4、2xy 的值域是40|yy,则它的定义域是22|xx;若函数xy2log的值域是3|yy,则它的定义域是8|xx;其中不正确的命题的序号是把你认为不正确的序号都填上;三.解答题 74+82=44 分 15.设集合023|2xxxA,02|2mxxxB,若AB,求实数m的值组成的集合;16.求函数22123log)(xxxf的定义域和值域;17.设244)(xxxf,若10 a,试求:1)1()(afaf的值;2)40114010()40113()40112()40111(ffff的值;3 求值域;18.二次函数)(xf满足xxfxf2)()1(,且1)0(f,1 求)(xf的解析式;2 在区间
5、 1,1上)(xfy 的图象恒在mxy 2图象的上方,试确定实数m的范围;19.已知1222)(xxaaxf)(Rx,若)(xf满足)()(xfxf,1 求实数a的值;2 判断函数的单调性,并加以证明;20.已知函数)1(log2xy的图象上两点 B、C 的横坐标分别为2a,a,其中0a;又)0,1(aA,求ABC面积的最小值及相应的a的值;试题答案 一.15DBDBB 610DDABB 二.12.23或21 13.4520 x 14.三.15.解:2,1023|2xxxA又AB,若B时,082m,得2222m,此时AB 若B 为单元素集时,0,22m或22m,当22m时,2B,AB,当22m
6、,2B,AB;若B为二元素集时,须2,1 AB m21,即3m,此时AB;故实数m的值组成的集合为mm22|22或3m 16.解:使函数有意义,则满足0232xx 0)1)(3(xx解得13x则函数的定义域为)1,3(又22123log)(xxxf在)1,3(上,而4)1(402x 令)2,0()1(42xt),1()(tf 则函数的值域为),1(17.解:1244244)1()(11aaaaafaf24444244aaaa 2 根据 1 的结论 32421)(xxfRx 18.解:1 由题设cbxaxxf2)()0(a 1)0(f1c又xxfxf2)()1(xcbxaxcxbxa2)()1(
7、)1(22 xbaax22022baa11ba 1)(2xxxf 2 当 1,1x时,1)(2xxxfy的图象恒在mxy 2图象上方 1,1x时mxxx212恒成立,即0132mxx恒成立 令mxxxg13)(2 1,1x时,mgxg1131)1()(2min1m 故只要1m即可,实数m的范围1m 19.解:1 函数)(xf的定义域为R,又)(xf满足)()(xfxf)0()0(ff,即0)0(f0222a,解得1a 2 设21xx,得21220 xx 则12121212)()(221121xxxxxfxf)12)(12()22(22121xxxx 0)()(21xfxf,即)()(21xfxf)(xf在定义域R 上为增函数 20.解:如图 解法 1:CACBABCCBBABCSSSS梯形 又0a,显然当0a时,3log21)(2minABCS 解法 2:过 A 作 L 平行于y轴交 BC 于 D,由于 A 是CB中点 D 是 BC 中点ADBADCABCSSS|1|211|21ADADAD)1(log)3(log212|22aayyADCB 下同解法1
限制150内