《水污染控制技术》——实训指导书.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《《水污染控制技术》——实训指导书.pdf》由会员分享,可在线阅读,更多相关《《水污染控制技术》——实训指导书.pdf(43页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、实验一 颗粒自由沉淀实验 一、实验目的 1加深对自由沉淀特点、基本概念及沉淀规律的理解。2掌握颗粒自由沉淀实验的方法,并能对实验数据进行分析、整理、计算和绘制颗粒自由沉淀曲线。二、实验原理 颗粒的自由沉淀是指在沉淀的过程中,颗粒之间不互相干扰、碰撞、呈单颗粒状态,各自独立完成的沉淀过程。自由沉淀有两个含义:(1)颗粒沉淀过程中不受器壁干扰影响;(2)颗粒沉降时,不受其它颗粒的影响。当颗粒与器壁的距离大于 50d(d 为颗粒的直径)时就不受器壁的干扰。当污泥浓度小于 5000mg/l 时就可假设颗粒之间不会产生干扰。颗粒在沉砂池中的沉淀以及低浓度污水在初沉池中的沉降过程均是自由沉淀,自由沉淀过程
2、可以由 Stokes(斯笃克斯)公式进行描述。但是由于水中颗粒的复杂性,颗粒粒径、颗粒比重很难或无法准确地测定,因而沉淀效果、特性无法通过公式求得而是通过静沉实验确定。取一定直径、一定高度的沉淀柱,在沉淀柱中下部设有取样口,如图 1.1 所示,将已知悬浮物浓度为 C0的水样注入沉淀柱,取样口上水深为 h0,在搅拌均匀后开始沉淀实验,并开始计时,经沉淀时间 t1,t2,ti 从取样口取一定体积水样,分别记下取样口高度,分析各水样的悬浮物浓度 C1、C2Ci,从而通过公式 C0Ci/C0100%式中:颗粒被去掉百分率;C0原水悬浮物的浓度(mg/l)Citi 时刻悬浮物质量浓度(mg/l)同时计算
3、:pCi/C0100%式中:p悬浮颗粒剩余百分率;C0原水悬浮物的浓度(mg/l)Citi 时刻悬浮物质量浓度(mg/l)图 11 自由沉淀示意图 通过下式计算沉淀速率 u=h010/ti60 式中:u沉淀速率(mm/s);h0取样口高度(cm)ti沉淀时间(min)通过以上方法进行实验要注意以下几点:(1)每从管中取一次水样,管中水面就要下降一定高度,所以,在求沉淀速度时要按实际的取样口上水深来计算,为了尽量减小由此产生的误差,使数据可靠应尽量选用较大断面面积的沉淀柱。(2)实际上,在经过时间 ti 后,取样口上 h 高水深内颗粒沉到取样口下,应由两个部分组成,即:uu0h/ti 的这部分颗
4、粒,经时间 ti 后将全部被去除。除此之外,uu0h/ti 的这一部分颗粒也会有一部分颗粒经时间 ti 后沉淀到取样口以下,这是因为,沉速usu0的这部分颗粒并不都在水面,而是均匀地分布在整个沉淀柱的高度内,因此,只要在水面下,它们下沉至池底所用的时间能少于或等于具有沉速 u0的颗粒由水面降至池底所用的时间 ti,那么这部分颗粒也能从水中被除去,。但是以上实验方法并未包括这一部分,所以存在一定的误差。(3)从取样口取出水样测得的悬浮固体浓度 C1、C2Ci 等,只表示取样口断面处原水经沉淀时间 t1,t2,ti 后的悬浮固体浓度,而不代表整个 h 水深中经相应沉淀时间后的悬浮固体浓度。三、实验
5、设备及仪器 1沉淀装置(沉淀柱、贮水箱、水泵空压机)2计时用秒表 3 分析天平(万分之一,一台)4 恒温烘箱 5 具塞称量瓶 6 量筒(100ml 10 个)7 定量滤纸 8 干燥器 9 漏斗(10 个)10漏斗架(2 个)11水样(自行配制)四、实验操作及步骤 1将实验水样倒入沉淀柱,并用空压机向沉淀柱中压缩空气将水样搅拌均匀。2用量筒取样 100ml,测量原水悬浮物浓度并记为 C0.3开动秒表开始计时,当时间为 1min,5min,10min,15min,20min,40min,60min,120min时,在取样口取出100ml水样,在每次取样后读出取样口上水面高h.4.测出每次水样的悬浮
6、物浓度(测定方法见悬浮物分析方法)5 记录实验原始数据,将数据填入表11 中。表 1-1 颗粒自由沉淀实验记录 日期:水样:静沉时间(min)滤纸编号 称量瓶号 称量瓶+滤纸重(g)取样体积(mL)瓶纸+SS重(g)水样SS 重(g)C0(mg/L)沉淀高度H(cm)0 1 5 10 15 20 40 60 120 注:也可采用浊度仪测定悬浮物浓度 五、注意事项 1向沉淀柱内进水时,速度要适中,既要较快完成进水,以防进水中一些较重颗粒沉淀,又要防止速度过快造成柱内水体紊动,影响静沉实验效果。2取样前,一定要记录管中水面至取样口距离h0(以 cm 计)。六、实验数据及结果整理 1计算悬浮物去除率
7、、剩余率、沉淀速率,将数据填入表 12 中。静沉时间/min 悬浮物去除率 悬浮物剩余率 沉淀速率 1 5 10 15 20 40 60 120 2.分别以 u 及 t 为横坐标,绘制 t,u,Pu 关系曲线。七、思考题 1自由沉淀中颗粒沉速与絮凝沉淀中颗粒沉速有何区别。2绘制自由沉淀静沉曲线的方法及意义。实验二 混凝沉淀实验 一、实验目的 1通过实验,观察混凝现象,加深对混凝理论的理解。2选择和确定最佳混凝工艺条件。3了解影响混凝条件的相关因素。二、实验原理 天然水中存在大量胶体颗粒,是使水产生浑浊的一个重要原因,胶体颗粒靠自然沉淀是不能除去的。水中的胶体颗粒,主要是带负电的粘土颗粒。胶粒间
8、的静电斥力,胶粒的布朗运动及胶粒表面的水化作用,使得胶粘具有分散稳定性,三者中以静电斥力影响最大。向水中投加混凝剂能提供大量的正离子,压缩胶团的扩散层,使电位降低,静电斥力减小。此时,布朗运动由稳定因素转变为不稳定因素,也有利于胶粒的吸附凝聚。水化膜中的水分子与胶粒有固定联系,具有弹性和较高的粘度,把这些水分子排挤出去需要克服特殊的阻力,阻碍胶粒直接接触。有些水化膜的存在决定于双电层状态,投加混凝剂降低电位。有可能使水化作用减弱。混凝剂水解后形成的高分子物质或直接加入水中的高分子物质一般具有链状结构在胶粒与胶粒间起吸附架桥作用,即使电位没有降低或降低不多,胶粒不能相互接触,通过高分子链状物吸附
9、胶粒,也能形成絮凝体。消除或降低胶体颗粒稳定因素的过程叫做脱稳。脱稳后的胶粒,在一定的水力条件下,才能形成较大的絮凝体,俗称矾花。直径较大且较密实的矾花容易下沉。自投加混凝剂直至形成较大矾花的过程叫混凝。混凝离不开投混凝剂。混凝过程最关键的是确定最佳混凝工艺条件,例如,有机混凝剂、无机混凝剂、人工合成混凝剂,天然高分子混凝剂等,所以,混凝条件很难确定:要选定某种混凝剂的投加量,还需考虑 pH 的影响,如果 pH 值过低(小于 4),则混凝剂水解受到限制,其化合物中很少有高分子物质存在,絮凝作用较差。如果 pH 值过高(大于 910),它们就会出现溶解现象,生成带负电荷的络合离子,也不能极好发挥
10、絮凝作用。另外,加了混凝剂的胶体颗粒,在逐步形成大的絮凝体过程中,会受到一些外界因素影响,如水流速度、pH 值及沉淀时间等等,所以,相关因素也需要加以考虑。三、实验设备及仪器 1六联搅拌机 1 台,如图 2GDS3 型光电式浑浊度仪 1 台 3PHS2 型酸度计 1 台 4烧杯(1000mL、500mL、200mL 各 6 个)5烧杯(500mL 3 个)6移液管(lmL、2mL、5mL、10mL 各 4 支)7注射器(50mL 2 支)8温度计 1 个 四、实验用试剂 1硫酸铝 10g/l 2三氯化铁 10g/l 3盐酸 10%4氢氧化钠 10%5聚丙稀酰胺 1ml/l 五、实验操作步骤 1
11、、混凝剂的确定 在硫酸铝、三氯化铁、聚丙烯酰胺三种混凝剂中,确定一种最佳混凝效果的混凝剂(1)测定原水特征,即策测定原水的浊度、温度、pH 值。记录在表 21 中。(2)用三个 500ml 的烧杯,分别取 200ml 原水,并装有水样的烧杯置于混凝仪上。(3)分别向三个烧杯中加入氯化铁、硫酸铝、聚丙烯酰胺,并每次加 1.0ml,同时进行搅拌(中速 150r/min,5min),直到其中一个试样出现矾花,这时记录下每个试样中混凝剂的投加量,并记录在表 21 中。(4)停止搅拌,静止 10min。(5)用 50ml 注射针筒抽取上清液,用浊度仪测出三个水样的浊度,记录在表 21 中。(6)根据测得
12、的浊度确定最佳混凝剂。2、确定混凝剂的最佳投量(1)用 6 支 1000ml 烧杯,分别取 800ml 原水,将装有水样的烧杯置于混凝仪上。(2)采用实验 1 中选定的最佳混凝剂,按不同投量(依次按 25100的剂量)分别加入到 800ml 原水样中,利用均分法确定此组实验的六个水样的混凝剂投加量,记录在表 22 中。(3)启动搅拌机,快速搅拌约 300r/min,0.5min,中速搅拌 150r/min,5min,慢速搅拌约70r/min,10min.(4)搅拌过程中,注意观察“矾花”的形成过程。(5)停止搅拌,静止沉淀 10min,然后用 50ml 注射筒分别抽出 6 个烧杯中的上清液,同
13、时用浊度仪测定水的剩余浊度,记录在表 22 中。3、最佳 pH 值的影响(1)用 6 支 1000ml 烧杯,分别取 800ml 原水,将装有水样的烧杯置于混凝仪上。(2)调整原水 pH 值,用移液管依次向 1、2、3 号装有原水的烧杯中,分别加入2.5ml,1.5ml,1.0mlHCL,再向 4、5、6 号装有原水的烧杯中,分别加入 0.2ml、0.7ml、1.2mlNaOH.(3)启动搅拌机,快速搅拌 300r/min,0.5min,随后停机,从每只烧杯中取 50ml 水样,依次用 pH 仪测定各水样的 pH 值,记录在表 23 中。(4)用移液管依次向装有原水烧杯中加入相同计量的混凝剂,
14、投加剂量按最佳投药量实验中得出的最佳投加量而确定。(5)启动搅拌机,快速搅拌 300r/min,0.5min,中速搅拌 150r/min,10min,慢速搅拌70r/min,10min,停机。(6)静止 10min,用 50ml 注射筒分别抽出 6 个烧杯中的上清液(共抽 3 次约 150ml)放入200ml 烧杯中,同时用浊度仪测定水的剩余浊度,记录在表 23 中。六、实验数据及结果整理 表 21 原始数据及三种混凝剂浊度测定记录表 原水浊度 原水温度 原水 pH 值 混凝剂名称 硫酸铝 氯化铁 聚丙烯酰胺 矾花形成时投混凝剂最佳量(ml)剩余混浊度(度 0 1 1 1 2 2 2 3 3
15、3 均 均 均 表 22 某一种混凝剂投加量的最佳选择 水样编号 1 2 3 4 5 6 7 8 9 10 混凝剂加注量(ml)剩余混浊度(度)1 2 3 4 表 23 pH 最佳值的选择 水样编号 1 2 3 4 5 6 投加质量分数 10的HCL(ml)2.5 1.5 1.0 投加质量分数 10的NaOH(ml)0.2 0.7 1.2 pH 混凝聚投加量 剩余混浊度 1 2 3 均 七、思考题 1根据最佳投药量实验曲线分析沉淀水浊度与泥凝剂加入量的关系 2本实验与水处理实际情况有哪些差别?如何改进?实验三 曝气充氧实验 一、实验目的 1加深理解曝气充氧的机理及影响因素。2了解掌握曝气设备清
16、水充氧性能测定的方法。3测定几种不同形式的曝气设备氧的总转移系数KLas,氧利用率,动力效率等,并进行比较。二、实验原理 曝气是人为地通过一些设备加速向水中传递氧的过程,常用的曝气设备分为机械曝气与鼓风曝气两大类,无论哪一种曝气设备,其充氧过程均属传质过程,氧传递机理为双膜理论,如图 3-43 示在氧传递过程中,阻力主要来自液膜,氧传递基本方程式为:)(CCKdtdcSLa (1)式 1 中 dtdc液体中溶解氧浓度变化速率 mg/Lmin;图 3.1 双膜理论 CSC氧传质推动力,mgL;CS液膜处饱和溶解氧浓度,mg/L;C一液相主体中溶解氧浓度,mgL;WYADKLLLa氧总转移系数;D
17、L液膜中氧分子扩散系数;YL液膜厚度 A气液两相接触面积;W曝气液体体积。由于液膜厚度 YL和液体流态有关,而且实验中无法测定与计算,同样气液接触面积 A的大小也无法测定与计算,故用氧总转移系数 KLa代替。将式 1 积分整理后得曝气设备氧总转移系数 KLa计算式。tSSLaCCCCttK00lg303.2 (2)式中 KLa氧总转移系数。1/min 或 1/h;t0、t曝气时间,min;C0曝气开始时池内溶解氧浓度,t00 时,C00,mgL;CS曝气池内液体饱和溶解氧值,mgL;Ct曝气某一时刻 t 时,池内液体溶解氧浓度,mgL。由式中可见,影响氧传递速率 KLa的因素很多,除了曝气设备
18、本身结构尺寸,运行条件而外,还与水质水温等有关。为了进行互相比较,以及向设计、使用部门提供产品性能,故产品给出的充氧性能均为清水,标准状态下,即清水(一般多为自来水)一个大气压 20下的充氧性能。常用指标有氧总转移系数 Klas充氧能力 Qc、动力效率 E 和氧利用率。曝气设备充氧性能测定实验,一种是间歇非稳态法,即实验时一池水不进不出,池内溶解氧浓度随时间而变;另一种是连续稳态测定法,即实验时池内连续进出水,池内溶解氧浓度保持不变。目前国内外多用间歇非稳态测定法,即向池内注满所需水后,将待曝气之水以无水亚硫酸钠为脱氧剂,氯化钻为催化剂,脱氧至零后开始曝气,液体中溶解氧浓度逐渐提高。液体中溶解
19、氧的浓度 C 是时间 t 的函数,曝气后每隔一定时间 t 取曝气水样,测定水中溶解氧浓度,从而利用上式计算 KLa 值,或是以亏氧量(CSCt)为纵坐标,在半对数坐标纸上绘图,直线科率即为 KLa值。三、实验设备及仪器 1 实验用曝气筒 2 空气压缩机 3 转子流量计、秒表、温度计 4 溶解氧瓶 5.滴定台 6酸式滴定管 7移液管(100ml、1ml、2ml 各 1 支)四、实验用试剂 1 无水亚硫酸钠 2 氯化钴 3 溶解氧分析所用药品 五、步骤操作步骤 1、向曝气筒内注人清水(自来水)至 1.8 米,取水样测定水中溶解氧值,并计算池内溶解氧含量 GDOV。V=hd2H/4 2.计算投药量:
20、(a)脱氧剂采用无水亚硫酸钠。根据 2Na2SO3+O2=2Na2SO4 则每次投药量 g=G8(1.11.5)。1.11.5 值是为脱氧安全而取的系数。(b)催化剂采用氯化钻,浓度为 0.1mgL,投加 0.1V,将称得的药剂用温水化开,由池顶倒入池内,约 10min 后,取水样、测其溶解氧。(3)当池内水脱氧至零后,打开空压机向曝气筒内充氧,同时开始计时,当时间为 1min、2min、5min、10min、15min、25min、40min 分别取水样测定溶解氧值,直至水中溶解氧值不再增长为止,(达到饱和)测定饱和溶解氧 CS值。(4)记录空气流量、气温、水温。(5)将原始数据记入表 31
21、、32 中。六、实验数据及结果整理 (1)根据式 2 计算不同时刻 lnCS-C0/CS-Ct,并将计算数值填入表 33 中,并以lnCS-C0/CS-Ct 为纵坐标,以 t 为横坐标绘制曲线,通过图解计算斜率方法,求出 Kla 值。表 31 实验原始数据 扩散器形式 曝气筒直径(mm)有效水深(m)水温()供气量(m3.h-1)气温()表 32 水样测定数据记录 瓶号 时间(min)滴定的药量 V2-V1 溶解氧浓度(ml/l)V1(ml)V2(ml)饱和溶解氧(mg/l)表 33 曝气充氧实验计算数据 T(min)Ct lnCS-C0/CS-Ct,T(min)Ct lnCS-C0/CS-C
22、t,七、思考题 1论述曝气在生物处理中的作用。2曝气充氧原理及其影响因素是什么?实验四 加压溶气气浮实验 一、实验目的(1)通过实验掌握气浮的原理,加深对气浮原理的理解。(2)了解悬浮物浓度、操作压力、气固比、澄清分离效率之间的关系。(3)通过实验模型的运行,掌握加压溶气气浮实验方法和加压溶气气浮装置的工艺流程。二、实验原理 气浮是固液分离或液液分离的一种技术。它是指人为采取某种方式产生大量的微小气泡,使气泡与水中一些杂物微粒相吸附形成相对密度比水轻的气浮体,气浮体在水浮力的作用下,上浮到水面而形成浮渣,进而达到杂质与水分离的目的。气浮常被用来分离相对密度小于或接近于 1 且难以重力自然沉降法
23、去除的悬浮颗粒,其处理废水的实质是:气泡和粒子间进行物理吸附,而形成絮粒上浮分离。加压溶气气浮是先将空气加压,使其溶于水,形成空气过饱和溶液,然后减至常压使溶气析出,并以微细气泡形式释放出来,从而使水杂质颗粒被黏附而上浮。本实验采用在溶气罐中进行加压溶气,而溶气则在气浮池中常压析出。三、实验装置、仪器及试剂(一)实验装置 本实验由气浮池、溶气罐、空压机、加压泵、搅拌器、转子流量剂、止回阀、水箱等组成。见图 4.1 图 4.1 加压溶气气浮实验装置(二)实验仪器及试剂 硫酸铝,废水(演示实验可用清水代替)、烘箱、分析天平、量筒、三角烧杯、抽滤装置、秒表、温度计等。四、实验步骤(1)首先检查气浮实
24、验装置是否完好。(2)把自来水加到回流加压水箱与气浮池中有效水深的90高度(3)将含乳化油或其他悬浮物的废水加到废水配水箱中,并投入 Al2(SO4)3等混凝剂后搅拌混合,投加 Al2(SO4)3的质量浓度为 5060 mg/L。(4)先开启空压机加压,必须加压至溶气罐内压力为 0.3Mpa 左右。(5)开启加压水泵,此时压水量按 24L/min 控制。(6)待溶气罐中的水位升至液位计中间高度,缓慢地打开溶气罐底部闸阀,其流量与加压水量相同为24L/min。(7)待空气在气浮池中释放并形成大量的微小气泡时,再打开原废水配水箱,废水进水量可按 46L/min 控制。(8)开启空压机加压至 0.3
25、 MPa。并开启加压水泵后,其空气流量可先按 0.10.2 L/min控制,考虑到加压溶气罐及管道中难以避免的漏气,其空气量按水面在溶气罐内的液位中间部位控制即可。多余的空气可以通过其顶部的排气阀排除。(9)出水可排至下水管道,也可回流至回流加压水箱。(10)以重量法测定原废水与处理水的水质变化,以悬浮物质量浓度表示(每个样品取100 mL 做两个平行样),结果记入表 4-1 中(11)然后可多次改变进废水量、空气在溶气罐内压力、加压水量等。来测定和分析原废水与处理水的水质,结果记入表4-1 中。五、注意事项(1)为了不弄脏气浮池与原水配水箱,也可做演示实验,采用清水或浓度不大的废水进行实验。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 水污染控制技术 水污染 控制 技术 指导书
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内