2023年班训_什么是班训_2.docx
《2023年班训_什么是班训_2.docx》由会员分享,可在线阅读,更多相关《2023年班训_什么是班训_2.docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年班训_什么是班训 班训由我整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“什么是班训”。 师:(用多媒体显示图片)今天我们来共同复习空间几何体的三视图,大家看老师准备的PPT上的这首诗,我们来一起读一下。? 生(齐读):横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中。? 师:这是苏轼的一首题西林壁,结合图片大家看前两句是否给我们一些启示呢?? 生1:诗中蕴含的就是三视图中的正视图和侧视图的思想。? 师:非常好,今天我们就来认真研究一下三视图。? 设计意图:以上是课题引入,应用计算机辅助教学,通过形象直观的图片和文字,激发学生学习数学的兴趣,提高他们的积极性,更重
2、要的是引导他们用数学思维解决生活中的问题。? 知识复习,温故知新? 师:请同学们回忆一下三视图包含哪几部分?? 生2:三视图包含:正视图,侧视图,俯视图。? 师:好,那么以长方体为例,请说明它的正视图、侧视图、俯视图是如何得到的。? 生3:光线从几何体的前面向后面正投影,得到的投影图叫该几何体的正视图;光线从几何体的左面向右面正投影,得到的投影图叫该几何体的侧视图;光线从几何体的上面向下面正投影,得到的投影图叫该几何体的俯视图。? 师:非常全面。那么如果给出几何体直观图,如何画出它的三视图呢?? 生4:先观察分析物体的基本形体组成及其形状大小,位置关系,再确定正视方向并画出正视图,最后根据“三
3、等关系”(长对正,高平齐,宽相等)画出侧视图和俯视图,? 师:还有补充吗?? 生5:画完后还要对照(直观图和三视图)检查。同时注意虚、实线(分界线和可见轮廓线用实线画出,不可见轮廓线用虚线画出)。? 设计意图:必备的基础知识复习是习题课的基础,尤其是三种视图定义的复习,通过多媒体技术,由几何体通过投射线进而形成视图,把立体到平面的转换过程很自然地呈现在学生面前,化难为简,易于接受。? 问题引入,例题讲解? 设计意图:三视图的问题在近几年的高考中以选择题和填空题为主,大体分三个类型:已知直观图,找三视图中一个(选择题),见类型一;已知三视图,还原直观图(选择题),见类型二;已知三视图,求直观图的
4、体积和表面积(填空题),见类型三。? 类型一:已知直观图画三视图? 教师:例1,找出与下列几何体对应的三视图(如图1),并在对应的三视图下面的括号中填上数码。? 生6:分别是3,4,1,2。? 师:非常好。例2,添线补全下列三视图(如上页图2)。? (本题学生口答很流利,解答时注意虚、实线,分界线和可见轮廓线用实线画出,不可见轮廓线用虚线画出。)? 设计意图:培养学生识图辨图能力。? 师:例3,画出下列几何体的三视图,大家把视图画在白纸上,画完的同学交给老师,老师把它投影出来共同欣赏。? 教师巡视把学生画的三视图用电子投影仪投出来(如图3),并共同分析、讲授。? 设计意图:重在考查学生的观察能
5、力和表述能力。? 类型一设计意图:本例是由立体到平面的过程,题中4个图由易到难,让学生自己去画,教师不参与,完全放手给学生,引导学生按照三视图的画法一步步去画,在这个过程中,培养学生独立自主的精神,科学严谨的学习态度。? 类型二:已知三视图还原直观图? 师:例4,选出此简单几何体三视图对应的实物图(如图4)。? (本题学生口答,很流利)? 师:完全正确。好,看例5,根据三视图想象物体原形(如图5),并画出物体的直观图。画好后我们来共同投影欣赏。? 本题学生动手画图,教师把学生画的结果投影出来(如图6),注意得到几何体的虚实线问题。? 类型二设计意图:此类型是由平面到立体的过程,笔者安排了2个例
6、题,尤其是例5,让学生明确不仅要重视正视图,还要兼顾侧视图和俯视图,在这个环节中学生要不断去想、去画,去动手、去修正,只有这样才能逐步实现由眼中有图到心中有图,从而培养学生手眼心的协调能力。? 类型三:已知三视图,求直观图形体积表面积? 师:例6,一个正三棱柱(底面是正三角形,高等于侧棱长)的三视图如图7所示,求这个正三棱柱的表面积。? (本题难度不大,学生计算后会很快得出结果,给学生一些时间让他们充分消化。)? 生7:表面积是。? 师:非常好,下面大家看例6,用单位正方体块搭一个几何体,使它的正视图和俯视图如图8所示,它的体积最大值,最小值。? (让学生小组讨论后由各小组代表发表见解)? 第
7、4小组代表:我们组认为最大值是14,最小值是9。我们发现本题的几何体可以用一个333的魔方转化,由正视图发现第2列第1组,第3列1、2组必须没有,则去掉,剩下的部分满足正视图;再看俯视图,第2列第3组,第3列2、3组必须没有,则去掉,此时剩下的正方体就是本题的最大值。至于最小值,我们发现取最大值时俯视图中第1列的3组正方体中只要保留一组3个正方体即可满足2个视图,另2组保留1个正方体。同理,俯视图第2列保留1组2个正方体另一组保留1个即可,俯视图第3列保持不变,则得到最小值9。? 第2小组代表:我们组也认为最大值是14,最小值是9。但我们的方法和第4小组恰恰相反,我们先由俯视图出发,布置出6个
8、正方体,再观察正视图,发现第1列高度是3,第2列高度是2,第3列高度是1,则在俯视图的第1列3个位置都放2个正方体,第2列2个位置都放1个正方体,第3列不再放,则得到最大值14;构造最小值时,还是由俯视图出发,布置出6个正方体,再观察正视图,发现第1列高度是3,第2列高度是2,第3列高度是1,则在俯视图的第1列3个位置只选1个位置放2个正方体,其余2个位置不变,第2列2个位置选1个位置放1个正方体,另1个位置不动,第3列不再放,则最小值9就得到了。? 师:非常好,大家说得很精彩,说明你们的讨论很有效。我们再请一位同学简练说明一下此几何体两种最值的构成方式。? 生8:由2个视图可知左起第一列前中
9、后三个位置都有正方体,每个位置最多3个,最少1个,但必须有一个位置放3个,第二列前后2个位置都有正方体,最多2个,最少1个,但必须有一个位置放2个,第三列有且只有1个(如图9)。? 师:这位同学说得非常好,他把本题最难的地方用精炼的语言表达得非常清楚、明白。大家掌声鼓励一下。? 类型三设计意图:课堂进行到此学生开始进入精力疲劳期,此时安排1个趣味性很强的问题,意在重新激发学生的学习兴趣,让学生通过自主阅读,小组讨论,得出结果,给出方案。对于提高学生周密思维能力,协调能力,同伴互助能力是有好处的。另外,笔者认为课堂是学生的,应该让他们动起来,当他们真正动起来的时候,通过小组合作,思想交流,进而得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年班训 什么是 _2
限制150内