高考数学大一轮复习第七章立体几何第七节立体几何中的向量方法教师用书理.doc
《高考数学大一轮复习第七章立体几何第七节立体几何中的向量方法教师用书理.doc》由会员分享,可在线阅读,更多相关《高考数学大一轮复习第七章立体几何第七节立体几何中的向量方法教师用书理.doc(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、- 1 -第七节第七节 立体几何中的向量方法立体几何中的向量方法2017 考纲考题考情考纲要求真题举例命题角度能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何中的应用。2016,全国卷,18,12 分(面面垂直、二面角)2016,全国卷,19,12 分(线面垂直,二面角)2016,全国卷,19,12 分(线面平行、线面角)2016,天津卷,17,13 分(线面平行,线面角、二面角)2016,山东卷,17,12 分(线面平行、二面角)1.本节是高考中的必考内容,涉及用向量法计算空间异面直线所成角、直线和平面所成角、二面角;2.题型以解答题为主,要求有
2、较强的运算能力,广泛应用函数与方程的思想,转化与化归思想。微知识 小题练自|主|排|查1两条异面直线所成角的求法设两条异面直线a,b的方向向量为a a,b b,其夹角为,则cos|cos|(其中为异面直线a,b所成的角)。|a ab b| |a a|b b|2直线和平面所成角的求法如图所示,设直线l的方向向量为e e,平面的法向量为n n,直线l与平面所成的角为,向量e e与n n的夹角为,则有 sin|cos|。|n ne e| |n n|e e|- 2 -3求二面角的大小(1)如图,AB,CD是二面角l的两个面内与棱l垂直的直线,则二面角的大小, 。ABCD(2)如图,n n1,n n2分
3、别是二面角l的两个半平面,的法向量,则二面角的大小n n1,n n2或 n n1,n n2 。微点提醒 1一般来说,如果已知的空间几何体中含有两两垂直且交于一点的三条直线时,就以这三条直线为坐标轴建立空间直角坐标系;如果不存在这样的三条直线,则应尽可能找两条垂直相交的直线,以其为两条坐标轴建立空间直角坐标系,即坐标系建立时以其中的垂直相交直线为基本出发点。2异面直线所成的角与其方向向量的夹角:当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;否则向量夹角的补角是异面直线所成的角。3二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面,的法向量n n1,n n2时
4、,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与- 3 -向量n n1,n n2的夹角是相等,还是互补。小|题|快|练一 、走进教材(选修 21P117T4改编)正三棱柱(底面是正三角形的直棱柱)ABCA1B1C1的底面边长为2,侧棱长为 2,则AC1与侧面ABB1A1所成的角为_。2【解析】 以C为原点建立空间直角坐标系,得下列坐标:A(2,0,0),C1(0,0,2)。点2C1在侧面ABB1A1内的射影为点C2。(3 2,32,2 2)所以(2,0,2),AC12AC2(1 2,32,2 2)设直线AC1与平面ABB1A1所成的角为,则- 4 -cos。AC1AC2|AC1|AC
5、2|1082 3 332又,所以。0, 2 6【答案】 6二、双基查验1已知正四棱柱ABCDA1B1C1D1中,AA12AB,E为AA1的中点,则异面直线BE与CD1所成角的余弦值为_。【解析】 如图,以D为坐标原点建立如图所示空间直角坐标系。设AA12AB2,则B(1,1,0),E(1,0,1),C(0,1,0),D1(0,0,2),所以(0,1,1),(0,1,2),所以BECD1cos,。BECD1122 53 1010【答案】 3 10102过正方形ABCD的顶点A作线段PA平面ABCD,如果ABPA,那么平面ABP与平面CDP所成的二面角的大小为_。【解析】 建立如图所示空间直角坐标
6、系,设ABPA1,知A(0,0,0),B(1,0,0),D(0,1,0),C(1,1,0),P(0,0,1),由题意,AD平面ABP,设E为PD的中点,连接AE,则- 5 -AEPD,又因为CD平面PAD,所以AECD,又PDCDD,所以AE平面CDP。所以(0,1,0),分别是平面ABP,平面 CDP的法向量,且, 45,所ADAE(0,1 2,1 2)ADAE以平面ABP与平面CDP所成的二面角为 45。【答案】 45第一课时第一课时 利用空间向量求空间角利用空间向量求空间角微考点 大课堂考点一 异面直线所成的角【典例 1】 (2015全国卷)如图,四边形ABCD为菱形,ABC120,E,
7、F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE2DF,AEEC。- 6 -(1)证明:平面AEC平面AFC;(2)求直线AE与直线CF所成角的余弦值。【解析】 (1)证明:如图,连接BD,设BDACG,连接EG,FG,EF。在菱形ABCD中,不妨设GB1。由ABC120,可得AGGC。3由BE平面ABCD,ABBC,可知AEEC。又AEEC,所以EG,且EGAC。3在 RtEBG中,可得BE,2故DF。22在 RtFDG中,可得FG。62在直角梯形BDFE中,由BD2,BE,DF,222可得EF。3 22从而EG2FG2EF2,所以EGFG。又ACFGG,所以EG平面A
8、FC。因为EG平面AEC,所以平面AEC平面AFC。(2)如图,以G为坐标原点,分别以,的方向为x轴,y轴正方向,|为单位长度,GBGCGB建立空间直角坐标系Gxyz。- 7 -由(1)可得A(0,0),E(1,0,),F,C(0, ,0),32(1,0,22)3所以(1, ,),。AE32CF(1, 3,22)故 cos, 。AECFAECF|AE|CF|33所以直线AE与直线CF所成角的余弦值为。33【答案】 (1)见解析 (2)33反思归纳 求一对异面直线所成角:一是按定义平移转化为两相交直线的夹角;二是在异面直线上各取一向量,转化为两向量的夹角或其补角,无论哪种求法,都应注意角的范围的
9、限定。【变式训练】 (2017保定模拟)如图所示,在三棱柱ABCA1B1C1中,AA1底面ABC,ABBCAA1,ABC90,点E,F分别是棱AB,BB1的中点,则直线EF和BC1所成的角是( )- 8 -A45 B60C90 D120【解析】 以BC为x轴,BA为y轴,BB1为z轴,建立空间直角坐标系。设ABBCAA12,C1(2,0,2),E(0,1,0),F(0,0,1)。(0,1,1),(2,0,2)。EFBC12,记,所成角为。EFBC1EFBC1cos 。22 2 21 2EF和BC1所成角为 60。【答案】 B- 9 -考点二 直线与平面所成的角【典例 2】 (2016全国卷)如
10、图,四棱锥PABCD中,PA底面ABCD,ADBC,ABADAC3,PABC4,M为线段AD上一点,AM2MD,N为PC的中点。(1)证明:MN平面PAB;(2)求直线AN与平面PMN所成角的正弦值。【解析】 (1)证明:由已知得AMAD2。2 3取BP的中点T,连接AT,TN。由N为PC的中点知TNBC,TNBC2。1 2又ADBC,故TN綊AM,四边形AMNT为平行四边形,于是MNAT。因为AT平面PAB,MN平面PAB,所以MN平面PAB。(2)取BC的中点E,连接AE。由ABAC得AEBC,从而AEAD,且AEAB2BE2。AB2(BC2)25以A为坐标原点,的方向为x轴正方向,建立如
11、图所示的空间直角坐标系Axyz。由AE题意知,P(0,0,4),M(0,2,0),C(,2,0),N,(0,2,4),5(52,1,2)PMPN,。(52,1,2)AN(52,1,2)- 10 -设n n(x,y,z)为平面PMN的法向量,则Error!即Error!可取n n(0,2,1)。于是|cosn n, |,则直线AN与平面PMN所成角的正弦值为。AN|n nAN|n n|AN|8 5258 525【答案】 (1)见解析 (2)8 525反思归纳 直线l与平面所成角与直线的方向向量l l、平面的法向量n n的夹角l l,n n不是一回事,满足关系 sin|cosl l,n n|。【变
12、式训练】 (2016青岛模拟)如图,在直棱柱ABCDA1B1C1D1中,ADBC,BAD90,ACBD,BC1,ADAA13。- 11 -(1)证明:ACB1D;(2)求直线B1C1与平面ACD1所成角的正弦值。【解析】 (1)证明:易知,AB,AD,AA1两两垂直,如图,以A为坐标原点,AB,AD,AA1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系。设ABt,则相关各点的坐标为A(0,0,0),B(t,0,0),B1(t,0,3),C(t,1,0),C1(t,1,3),D(0,3,0),D1(0,3,3)。从而(t,3,3),(t,1,0),B1DAC(t,3,0),BD因为ACBD,
13、所以t2300。ACBD- 12 -解得t或t(舍去)。33于是(,3,3),(,1,0),B1D3AC3因为3300,ACB1D所以,ACB1D即ACB1D。(2)由(1)知,(0,3,3),(,1,0),AD1AC3(0,1,0),B1C1设n n(x,y,z)是平面ACD1的一个法向量则Error!即Error!令x1,则n n(1,)。33设直线B1C1与平面ACD1所成的角为,则 sin|cosn n,|。B1C1|n nB1C1|n n|B1C1|37217即直线B1C1与平面ACD1所成的角的正弦值为。217【答案】 (1)见解析 (2)217考点三 二面角多维探究角度一:计算二
14、面角的大小【典例 3】 (2016全国卷)如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF2FD,AFD90,且二面角DAFE与二面角CBEF都是 60。(1)证明:平面ABEF平面EFDC;- 13 -(2)求二面角EBCA的余弦值。【解析】 (1)证明:由已知可得AFDF,AFFE,因为DFEFF,所以AF平面EFDC。又AF平面ABEF,故平面ABEF平面EFDC。(2)过D作DGEF,垂足为G,由(1)知DG平面ABEF。以G为坐标原点,的方向为x轴正方向,|为单位长,建立如图所示的空间直角坐GFGF标系Gxyz。由(1)知DFE为二面角DAFE的平面角,故D
15、FE60,则DF2,DG,可得3A(1,4,0),B(3,4,0),E(3,0,0),D(0,0,)。3由已知,ABEF,所以AB平面EFDC。又平面ABCD平面EFDCCD,故ABCD,CDEF。由BEAF,可得BE平面EFDC,所以CEF为二面角CBEF的平面角,CEF60。从而可得C(2,0,)。3连接AC,则(1,0,),(0,4,0),(3,4,),(4,0,0)。EC3EBAC3AB设n n(x,y,z)是平面BCE的法向量,则Error!即Error!所以可取n n(3,0,)。3设m m是平面ABCD的法向量,则Error!同理可取m m(0, ,4)。3则 cosn n,m
16、m。n nm m |n n|m m|2 1919故二面角EBCA的余弦值为。2 1919- 14 -【答案】 (1)见解析 (2)2 1919角度二:已知二面角的大小求值【典例 4】 如图,四棱锥PABCD中,底面ABCD为矩形,PA平面ABCD,E为PD的中点。(1)证明:PB平面AEC;(2)设二面角DAEC为 60,AP1,AD,求三棱锥EACD的体积。3【解析】 (1)证明:连接BD,设AC与BD的交点为G,则G为AC,BD的中点,连接EG。在三角形PBD中,中位线EGPB,且EG在平面AEC内,PB平面AEC,所以PB平面AEC。(2)设CDm,分别以AB,AD,AP所在直线为x,y
17、,z轴建立空间直角坐标系,则A(0,0,0),D(0, ,0),E,C(m, ,0)。3(0,32,12)3所以(0, ,0),AD3AE(0,32,12)(m, ,0)。AC3设平面ADE的法向量为n n1(x1,y1,z1),则n n10,n n10,ADAE解得一个n n1(1,0,0)。同理设平面ACE的法向量为n n2(x2,y2,z2),则n n20,n n20,ACAE解得一个n n2(,m,m)。33因为 cos60|cosn n1,n n2| ,解得m 。|n n1n n2| |n n1|n n2|33m23m21 23 2- 15 -设F为AD的中点,连接EF,则PAEF,
18、且EF ,EF平面ACD,AP 21 2所以EF为三棱锥EACD的高。所以VEACD SACDEF 。1 31 31 23 231 238所以三棱锥EACD的体积为。38【答案】 (1)见解析 (2)38反思归纳 1.利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小。(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小。2已知二面角大小求值的技巧建立恰当的空间直角坐标系,将两平面的法
19、向量用与待求相关的参数(字母)表示,利用两向量的夹角公式构建方程或不等式或函数,进而求解。【变式训练】 (2016安徽师大附中联考)如图,在四棱锥PABCD中,PA平面ABCD,DAB90,ABCD,ADCD2AB,E,F分别为PC,DC的中点。(1)证明:AB平面BEF;(2)设PAkAB(k0),且二面角EBDC的平面角大于 45,求k的取值范围。【解析】 (1)证明:由题意易得DF綊AB,又DAB90,所以ABFD是矩形,从而ABBF。因为PA平面ABCD,所以平面PAD平面ABCD,- 16 -又ABAD,平面PAD平面ABCDAD,所以AB平面PAD,所以ABPD。在PDC中,因为E
20、,F分别为PC,CD的中点,所以EFPD,所以ABEF。因为EFBFF,所以AB平面BEF。(2)以A为原点,以AB,AD,AP所在的直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系,设AB的长为 1,则B(1,0,0),D(0,2,0),P(0,0,k),C(2,2,0),所以E,所(1,1,k 2)以(1,2,0),。BDBE(0,1,k 2)设平面CDB的法向量为m m1(0,0,1),平面EBD的法向量为m m2(x,y,z),则Error!所以Error!取y1,可得m m2。(2,1,2 k)设二面角EBDC的平面角为,由图可知为锐角,则 cos|cosm m1,m m2|
21、,则k或k0,4 52 552 55所以k。2 55【答案】 (1)见解析 (2)(2 55,)- 17 -微考场 新提升1.(2016广西联考)在如图所示的多面体CABED中,AB平面ACD,DE平面ACD,ABCD1,AC,ADDE2。3(1)在线段CE上取一点F,作BF平面ACD(只需指出F的位置,不需证明);(2)对(1)中的点F,求直线BF与平面ADEB所成角的正弦值。解析 (1)取CE的中点F。连接BF,BF平面ACD(如图)。(2)由已知AC,CD1,AD2,AC2CD2AD2。ACCD。以C为原点,CD,CA3分别为x,y轴,过C垂直于平面ACD的直线为z轴,建立空间直角坐标系
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 一轮 复习 第七 立体几何 中的 向量 方法 教师 用书理
限制150内