2022年暖通工程中的些常见问题.doc
《2022年暖通工程中的些常见问题.doc》由会员分享,可在线阅读,更多相关《2022年暖通工程中的些常见问题.doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、温馨提示:文章出自张锡虎教授的课件,比拟长但值得珍藏,建议转载到你的空间渐渐看。关于设计用室外气象材料 有用供热空调设计手册186页中说:“表3.2-1列出了采暖通风与空气调理设计标准(GB 50019-2003)规定统计出的270个台站的气象参数。完全符合标准规定的统计要求。” 由于有用供热空调设计手册表3.2-1的编制人对采暖通风与空气调理设计标准规定理解的偏向,数值有错误。因而,并未被大多数设计单位所认同和采纳,在没有新的权威数值之前,仍沿用GBJ 19-87附录中的数值是适宜的。 有用供热空调设计手册表3.2-1正在进展更正。 事实上,任何技术措施、设计手册、标准设计图之类的技术材料,
2、并不应具备标准的同等效力。1 采暖(空调)水系统的假设干咨询题2 水系统的定压和补水3 水压试验压力4 管道热伸长及其补偿5 减振、降噪设计6 各种调理阀门的正确使用7 公共建筑通风的假设干咨询题8 防排烟设计中的假设干“边缘”咨询题9 合理选择热源、冷源和采暖空调方式10 全空气末端变风量系统的是是非非11 冷暖辐射空调采暖12 处理内区和部分外区常年“供冷”咨询题13 生物平安实验室的通风空调设计14 常压锅炉15 VRV系统及地面辐射采暖16 塑料类管材17 地源热泵和地热的梯级利用18 对电热采暖的多角度考虑19 水泵的水力特性、常见毛病和认识误区20 假设干环节的较佳调理操纵方式一、
3、采暖(空调)水系统的假设干咨询题1.采暖(空调)工程的简单性与复杂性 简单的解释采暖工程,确实是实现冬季采暖房间的热平衡,使房间的失热量与得热量相平衡。 温馨性空调比采暖烦恼一些的是除了热平衡以外,还需要实现湿平衡。 采暖(空调)工程的复杂性在于: 要同时满足许多个(甚至特别多)建筑空间的热状态,这确实是建立在系统水力平衡根底上的静态热平衡; 由于外界条件的变化,要随机满足热工功能各异采暖(空调)房间的热状态,这确实是建立在对系统水力工况调理操纵根底上的动态热平衡。2.采暖(空调)水系统的实际过程都不是等温降(升)的 采平和空调系统的设计计算,都建立在各环路供回水温差和平均水温一样的根底上,即
4、认为热(冷)媒通过末端设备后的温降(升)是一样的。 由于并联环路不可能到达完全的水力平衡,各并联环路的供水温度尽管都一样,但当实际流量与设计流量存在差异时,回水温度和供回水平均水温就会不一样,使末端设备的供热(冷)量偏离设计条件从而妨碍室温。 因而任何水系统的实际过程,都是变温降(升)的。系统水力失调程度最直截了当的反响确实是温降(升)的偏离幅度。 水力平衡所追求的目的,无非确实是到达或接近等温降(升)的效果。 例如:按照85/60、温降25设计的热水采暖系统,假如系统水力平衡达不到要求,直截了当后果是回水温度偏离60而使供热量变化。 由于单管热水采暖系统下游关于水温降的妨碍更加敏感,因而倾向
5、于采纳变温降法计算,即依照水力平衡度精确计算各环路的流量及其温降,各环路取不同的供回水平均温度确定散热器数量。 变温降法的计算结果,更符合水系统的实际运转过程。但假如并联环路之间的水力平衡在标准同意的范围内,采纳等温降法的计算结果,也能够比拟接近于实际过程。 同样,按照7/12、温升5设计的空调冷水系统,假如水力平衡达不到要求,直截了当后果是回水温度偏离12,室内空气状态(温度和相对湿度)就会偏离设计条件。但由于冷水平均温度的偏离,直截了当妨碍空气冷却过程的露点,即便调整末端设备容量(例如表冷器面积)也难以弥补。 并联环路的水力平衡特性,关于采暖或空调水系统,其原理是一样的。假如能把“变温降法
6、”的理念(而不是详细计算方法),灵敏运用到所有的水系统中,理解和掌握到达等温降(升)的途径和原理,设计水平就能够上一个较大的台阶。 由于采暖水系统的供、回水温差相对较大,传输一样热量的流量相对较小,所连带的咨询题相对较多,因而能够拿采暖水系统作为研究水力平衡特性的根底。 遗憾的是,不主要依照水力平衡的原则,而是按照流速、比摩阻直截了当确定管径的错误做法甚为流行。以致于经常出现不管所在环路的许用压差大小,只要散热器数量相近,就选用一样管径,大量工程实例证明,如此的“设计”必定会出现严峻的冷热不均。 完全依托进展调理可行吗?特别难! 集中采暖系统不但要满足单个房间散热量和供热量的热平衡,还要同时满
7、足特别多个建筑空间的热状态。亲身处理过“咨询题工程”就会体会到,完全依托调理实现水力平衡是十分困难的。 而层层设置自动调理配件“武装到牙齿”的复杂配置,既不符合现实经济条件,弄得不好还会发生负面效应。3.系统水力平衡的根本要求和措施 GB 50019-2003 采暖通风与空气调理设计标准4.8.6条规定:热水采暖系统的各并联环路之间的计算压力损失相对差额不应大于15;6.4.9条规定:空气调理水系统布置和选择管径时,应减少并联环路之间的压力损失的相对差额,当超过15时,应配置调理装置。 为什么是15呢?采暖通风与空气调理设计标准4.8.6条的条文说明中,连续了“基于保证采暖系统的运转效果,参照
8、国内外材料规定”的说法。而对空调水系统为何也采纳15?6.4.9条的条文说明并没有正面应对。 这个15的规定是相当严格的。并联环路计算压力损失相对差额不大于15%,最大只会引起的流量偏向8%左右,引起平均水平和散热量偏向2%左右,即便是对水温降妨碍比拟敏感的单管系统下游,引起平均水平和散热量偏向也只有5%左右。 我在调试过程中发觉,即便并联环路之间计算压力损失相对差额到达20%,最大只会引起的流量偏向11%左右,引起平均水平和散热量偏向3%左右,单管系统下游引起平均水平和散热量偏向7%左右,也不至于出现严峻的冷热不均。 因而,我对调试只要求例如流量偏向不大于10%左右或即便再稍大些,也可认为“
9、流量大体够”,就应该不出现严峻的冷热不均。 而到达这个标准,通过下述途径和步骤的正常设计,是应该能够做到的。如何推断“流量大体够”?例如能够采纳: 热量表或流量计 压力表, 测量供回水压差 温度计,测量供回水温度 用手感比拟回水温度 循环水泵进出口的压差 循环水泵电机的电流和电压 使计算压力损失相对差额不大于15的根本途径和步骤无非是:A 合理划分和均匀布置环路:所有并联的循环系统,则应以平衡和水力平衡为布置的根本原则。例如:环路不宜过长、较大负荷不宜布置在环路末端。B 按照增大末端设备、减小公共段阻力比例的原则,合理选择确定各段的管径和比摩阻。C 在计算的根底上,依照水力平衡要求配置必要的水
10、力平衡装置。 总压力损失和比摩阻取值及其分配 比拟合理的方法应该是: 依照GB 50189-2005公共建筑节能设计标准对集中热水采暖系统热水循环水泵的耗电输热比(EHR)和空气调理冷热水系统的输送能效比(ER)的,合理确定循环水泵的扬程。 循环水泵扬程减去冷(热)源设备系统和末端设备(包括末端设备的调理阀)的阻力,即为最不利环路的许用压力损失(P)。 将最不利环路许用压力损失(P),除以最不利环路供回水干管总长度(L),如考虑部分阻力约为总阻力的0.2-0.3,可得最不利环路的平均比摩阻(i)。 在使用“平均比摩阻”时,在同一环路内,末端管段应取较小比摩阻,起始管段应取较大比摩阻。 依照水力
11、平衡的原则,与最不利环路并联的其他环路,依照与最不利环路并联点的供回水压差(许用压力损失),确定其平均比摩阻。但最大流速不应超过有关标准的规定。 为有利于并联环路间的水力平衡,许用压力损失的分配,应尽量减少“共同段”阻力损失所占的比例。 例如:北京市新建集中供暖住宅分户热计量设计技术规程中,作出了以下规定:“用户二次水侧室外管网最不利环路管道的比摩阻, 宜不大于60Pa/m, 且其压力损失, 宜不大于热源出口处总压差的1/4。” 当并联环路的压力损失计算差大于15%时,应对计算压力损失较小的环路配置适当的调理装置,且标记出所需要的调理量。如此的环路应该是部分的, 而不是全部或大多数。 例如:北
12、京市新建集中供暖住宅分户热计量设计技术规程中,作出了以下规定:“应计算室外管网在每一建筑供暖入口的资用压差, 以对照室内系统的总压力损失, 正确选择入口调理装置。”4.关于同程与异程 那么,采纳使各并联环路的路程长度一样的同程系统,是否能够免除上述复杂过程而到达“自然平衡”的效果呢? 认为同程系统“天然平衡”是片面的,而且吃过不少亏。举例: 顺义一中宿舍楼干管同程上供下回单管顺序式 马家堡高层住宅的户内同程系统 以下图所示室外热水采暖干管同程系统中,1#、2#、3#楼的室内系统均一样,而供水管段A-B、B-C和回水管段D-E、E-F的管径均一样, 假如不进展调理,试推断哪一幢建筑得到的流量相对
13、最少? 这是一个同程系统供水管的末端,又是回水管的起始端。 沿水流方向,供水管自AB的流量大于BC,但管径一样,因而水力坡降先陡后平;回水管则相反,自FE的流量小于ED,但管径一样,因而水力坡降先平后陡。先陡后平的供水管水力坡降线,与先平后陡的回水管水力坡降线,画在水压图上,不确实是特别形象的“两头大、中间小”的资用压差吗? 在水压图上,可清晰地看到2#建筑的许用压差相对最小。由于“室内系统均一样”,因而其得到的流量相对最少。这也是同程系统的一种常见的现象。假如AB水力坡降过大,而FE水力坡降过小,有可能使两根水力坡降线相交,与2#楼的连接点还有可能出现“逆循环”,即许用压差为负值。这在异程系
14、统是不会发生的。同程式系统的设计要点:A 使供、回水管的水力坡降(比摩阻)相近;B 使供、回水管的水力坡降线尽量远离,即尽量减少“共同段”阻力损失所占的比例。3)关于重力(自然)作用压力咨询题 受节能设计标准的妨碍和制约,双管系统已经成为采暖系统制式的“主旋律”。 而正确处理好重力(自然)作用压力,是双管系统成败的关键咨询题之一。 末端高阻; 利用重力(自然)作用压力的下分式垂直双管系统。以下介绍两个工程实例来说明应对方法: 顺义商业楼 立管的水力平衡某热水采暖上供上回式垂直双管系统的改造及其反思(刊于暖通空调2007年1月期) 介绍某热水采暖上供上回式垂直双管系统的设计和实际运转过程发生的咨
15、询题,在分析了产生咨询题缘故的根底上,提出了假设干个处理方法和施行方案,经采纳其中便于施行的方案进展改造以后,获得了预期效果,通过反思得到了一些可供设计借鉴的经历。1 工程概况 北京某综合商业楼,建筑面积约14500,地上四层,首层和二层临街为对外营业的商户,三层和四层为众多公司的营业用房。设计采暖负荷1077kW,额定流量37m3/h, 处于供暖管网某一环路的末端,系统入口供回水压差约为2m水柱。 该工程于2000年设计,受工程条件所限,采纳了上供上回式垂直双管系统方式,供、回水干管设置在四层顶板下的吊顶内。系统型式如以下图。 建成后运转初期,就出现比拟严峻的垂直水力失调,四层和三层的散热器
16、热,二层特别是一层根本上不热。经关小四层和三层散热器支管阀门开度,情况有所改善。但在商户入住、自行进展精细装修过程中,对采暖系统进展装饰性包覆,并作了部分改动,特别是改变了散热器支管阀门调理后的开度,又回复到严峻的垂直水力失调状态。由于干管、立管和散热器几乎全部被包覆,十分难以进展调理和检修。 2004年,当地供热部门斥资数十万元在楼外增设加压泵站进展加压以增加流量,虽略有效果,但由于妨碍附近其他住宅采暖系统而无法运转,改造未获成功。2 毛病缘故分析 这是垂直双管系统比拟典型的垂直水力失调。主要缘故是:(1)立管沿垂直方向各散热器环路,即便不考虑自然作用压力,也不满足采暖通风与空气调理设计标准
17、4.8.6条关于“各并联环路之间的计算压力损失相对差额不应大于15”的要求。以比拟典型的24#立管2为例,计算压力损失如下表。各散热器环路之间的计算压力损失相对差额(2)采暖通风与空气调理设计标准4.8.9条还规定:机械循环系统双管热水采暖系统和分层布置的水平单管热水采暖系统,应考虑水在散热器和管道中冷却而产生的自然作用压力的妨碍采取相应的技术措施。 依照设计热媒参数95/70计算,供、回水立管的自然作用压力值为15.83mm水柱/m155.8Pa/m,取其2/3,楼层平均高度按照3.6m计算,每一楼层的自然作用压力值为360 Pa。 以首层散热器中心为计算基准线,水力平衡状态如下表。各散热器
18、环路计及自然作用压力后的剩余压差(3)增大散热器环路支管的计算压力损失,有利于各散热器环路之间的水力平衡,设计尽管采纳了阻力相对较大的截止阀,但由于管径为DN20mm,散热器环路的阻力损失仍然较小。最大的一个散热器环路(包括散热器、连接支管和两个截止阀)的计算压力损失,仅占立管总计算压力损失的6.9。而实际安装的是一般的闸阀。(4)当采纳上供上回式垂直双管系统,各层散热器环路计算压力损失相对差额与自然作用压力是叠加的。例如:在首层散热器环路与四层散热器环路的并联点(即附图中之2和2),四层散热器环路的计算压力损失,比首层散热器环路小416.9Pa,而又多得到1080Pa的自然作用压力,四层散热
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 暖通 工程 中的 常见问题
限制150内