角形全等的判定复习.ppt





《角形全等的判定复习.ppt》由会员分享,可在线阅读,更多相关《角形全等的判定复习.ppt(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、15.2 三角形全等的判定(复习)三角形全等的条件(复习)知识梳理:1 1:什么是全等三角形?一个三角形经过:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?哪些变化可以得到它的全等形?2 2:全等三角形有哪些性质?:全等三角形有哪些性质?3 3:三角形全等的判定方法有哪些?:三角形全等的判定方法有哪些?能够完全重合的两个三角形叫做全等三角形。能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到一个三角形经过平移、翻折、旋转可以得到它的全等形。它的全等形。(1):全等三角形的对应边相等、对应角相等。):全等三角形的对应边相等、对应角相等。(2):全等三角形
2、的周长相等、面积相等。):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、):全等三角形的对应边上的对应中线、角平分线、高线分别相等。高线分别相等。SSS、SAS、ASA、AAS方法指引证明两个三角形全等的基本思路:证明两个三角形全等的基本思路:(1):已知两边:已知两边-找第三边找第三边(SSS)找夹角找夹角 (SAS)(2):已知一边一角已知一边一角-已知一边和它的邻角已知一边和它的邻角已知一边和它的对角已知一边和它的对角找这边的另一个邻角找这边的另一个邻角(ASA)找这个角的另一个边找这个角的另一个边(SAS)找这边的对角找这边的对角(AAS)找一角找一
3、角(AAS)(3):已知两角已知两角-找两角的夹边找两角的夹边(ASA)找夹边外的任意边找夹边外的任意边(AAS)练习-例例1:已知:已知AC=FE,BC=DE,点点A,D,B,F在一条直线上,在一条直线上,AD=BF,求证:求证:E=CABDFEC证明:AD=FB AD+DB=BF+DB即AB=FD在在ABC和和FDE中中AC=FEBC=DEAB=FDABCFDE(SSS)E=C练习练习1:如图,:如图,AB=AD,CB=CD.求证求证:AC 平分平分BADADCB证明:在证明:在ABC和和ADC中中 AC=AC AB=AD CB=CD ABC ADC (SSS)BAC=DAC AC平分平分
4、BAD例例2:如图,:如图,AC和和BD相交于点相交于点O,OA=OC,OB=OD 求证:求证:DCAB证明:在证明:在ABO和和CDO中中 OA=OC AOB=COD OB=OD ABO CDO(SAS)A=C DCABAODBC练习练习2:已知,:已知,ABC和和ECD都是等边三角形,且点都是等边三角形,且点B,C,D在在一条直线上求证:一条直线上求证:BE=AD EDCAB变式:变式:以上条件不变,将以上条件不变,将ABC绕点绕点C旋转一定角度旋转一定角度(大于零度而小于六十度),(大于零度而小于六十度),以上的结论海成立吗?以上的结论海成立吗?证明证明:ABC和和ECD都是等边三角形都
5、是等边三角形 AC=BC DC=EC BCA=DCE=60 BCA+ACE=DCE+ACE即即BCE=DCA在在ACD和和BCE中中 AC=BC BCE=DCA DC=EC ACDBCE (SAS)BE=AD例例3:如图,:如图,D在在AB上,上,E在在AC上,上,AB=AC,B=C,试问试问AD=AE吗?为什么?吗?为什么?EDCBA解解:AD=AE理由:理由:在在ACD和和ABE中中 B=C AB=AC A=A ACD ABE (ASA)AD=AE练习练习3:如图,小明不慎将一块三角形模具打碎为如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就两块,他是否可
6、以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带能配一块与原来一样的三角形模具呢?如果可以,带那块去合适?为什么?那块去合适?为什么?BAAB例例4:已知:已知 AC=DB,1=2.求证求证:A=D21DCBA证明:在ABC和DCB中 AC=DB 1=2 BC=CB ABCDCB (SAS)A=D 练习练习4:如图,已知:如图,已知E在在AB上,上,1=2,3=4,那么,那么AC等于等于AD吗?为什么?吗?为什么?4321EDCBA解:解:AC=AD理由:在理由:在EBC和和EBD中中 1=2 3=4 EB=EB EBC EBD (AAS)BC=BD 在在ABC和
7、和ABD中中 AB=AB 1=2 BC=BD ABC ABD (SAS)AC=AD例例5:如图所示,:如图所示,AB与与CD相交于点相交于点O,A=B,OA=OB 添加条件添加条件 所以所以 AOCBOD 理由是理由是 AODCBC=DAOC=BODAASASAEDCBA例例6:如图所示,:如图所示,AB=AD,E=C 要想使要想使ABCADE可以添加的条可以添加的条件是件是 依据是依据是EDA=BDAE=BACBAD=EACAASFEDCBA例例7:如图,已知:如图,已知ACEF,DEBA,若使若使ABCEDF,还需要补还需要补充的条件可以是充的条件可以是 或或或或或或AB=EDAC=EFB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 角形 全等 判定 复习

限制150内