维随机变量函数分布和复习.ppt
《维随机变量函数分布和复习.ppt》由会员分享,可在线阅读,更多相关《维随机变量函数分布和复习.ppt(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第五节 随机变量函数的分布&习题课一、离散型随机变量一、离散型随机变量二、连续性随机变量二、连续性随机变量三、三、M=max(X,Y)及及N=min(X,Y)的分布的分布一、离散型分布的情形一、离散型分布的情形例例1 若若X、Y独立,独立,P(X=k)=ak,k=0,1,2,P(Y=k)=bk,k=0,1,2,求求Z=X+Y的概率函数的概率函数.解解:=a0br+a1br-1+arb0 由独立性由独立性此即离散此即离散卷积公式卷积公式r=0,1,2,解:依题意解:依题意 例例2 若若X和和Y相互独立相互独立,它们分别服从参数为它们分别服从参数为 的泊松分布的泊松分布,证明证明Z=X+Y服从参数
2、为服从参数为的泊松分布的泊松分布.由卷积公式由卷积公式i=0,1,2,j=0,1,2,由卷积公式由卷积公式即即Z服从参数为服从参数为 的泊松分布的泊松分布.r=0,1,例例3 设设X和和Y相互独立,相互独立,XB(n1,p),YB(n2,p),求求Z=X+Y 的分布的分布.不需要计算的另一种证法不需要计算的另一种证法:Z=X+Y 是在是在n1+n2次独立重复试验中事件次独立重复试验中事件A出出现的次数,每次试验中现的次数,每次试验中A出现的概率为出现的概率为p,于是,于是Z是以(是以(n1+n2,p)为参数的二项随机变量,即)为参数的二项随机变量,即Z B(n1+n2,p).例例4 设设X和和
3、Y的联合密度为的联合密度为 f(x,y),求求Z=X+Y的密度的密度.解解:Z=X+Y的分布函数是的分布函数是:FZ(z)=P(Zz)=P(X+Y z)这里积分区域这里积分区域D=(x,y):x+y z是直线是直线x+y=z 左下方的半平面左下方的半平面.二、连续型分布的情形二、连续型分布的情形 化成累次积分化成累次积分,得得 固定固定z和和y,对方括号内的积分作变量代换对方括号内的积分作变量代换,令令x=u-y,得得变量代换变量代换交换积分次序交换积分次序由概率由概率密度与分布函数的关系密度与分布函数的关系,即得即得Z=X+Y的概率密度为的概率密度为:由由X和和Y的对称性的对称性,fZ(z)
4、又可写成又可写成 以上两式即是两个随机变量和以上两式即是两个随机变量和的概率密度的一般公式的概率密度的一般公式.特别,当特别,当X和和Y独立,设独立,设(X,Y)关于关于X,Y的边缘的边缘密度分别为密度分别为fX(x),fY(y),则上述两式化为则上述两式化为:这两个公式称为卷积公式这两个公式称为卷积公式.下面我们用下面我们用卷积公式来求卷积公式来求Z=X+Y的概率密度的概率密度为确定积分限为确定积分限,先找出使被积函数不为先找出使被积函数不为0的区域的区域 例例5 若若X和和Y 独立独立,具有共同的概率密度具有共同的概率密度求求Z=X+Y的概率密度的概率密度.解解:由卷积公式由卷积公式也即也
5、即为确定积分限为确定积分限,先找出使被积函数不为先找出使被积函数不为0的区域的区域 如图示如图示:也即也即于是于是用类似的方法可以证明用类似的方法可以证明:若若X和和Y 独立独立,结论又如何呢结论又如何呢?若若X和和Y 独立独立,具有相同的分布具有相同的分布N(0,1),则则Z=X+Y服从正态分布服从正态分布N(0,2).教材教材P91页例请自已看页例请自已看.注意此例的结论:注意此例的结论:有限个独立正态变量的线性组合仍然有限个独立正态变量的线性组合仍然服从正态分布服从正态分布.更一般地更一般地,可以证明可以证明:正态分布的可加性正态分布的可加性三、三、M=max(X,Y)及及N=min(X
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 随机变量 函数 分布 复习
限制150内