模式识别非监督学习方法聚类分析优秀PPT.ppt
《模式识别非监督学习方法聚类分析优秀PPT.ppt》由会员分享,可在线阅读,更多相关《模式识别非监督学习方法聚类分析优秀PPT.ppt(55页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、模式识别非监督学习方法聚类分析你现在浏览的是第一页,共55页1.1基本概念基本概念v分类与聚类的区别分类与聚类的区别v分类分类:用已知类别的样本训练集来设计分类器(监督学习)v聚类聚类(集群):用事先不知样本的类别,而利用样本的先验知识来构造分类器(无监督学习)v举例:小孩区分桔子和苹果小孩区分桔子和苹果你现在浏览的是第二页,共55页v相似性与距离聚类相似性与距离聚类v相似性:相似性:模式之间具有一定的相似性,这既表现在实物的显著特征上,也表现在经过抽象以后特征空间内的特征向量的分布状态上。v聚类分析定义:聚类分析定义:对一批没有标出类别的模式样本集,按照样本之间的相似程度分类,相似的归为一类
2、,不相似的归为另一类,这种分类称为聚类分析,也称为无监督分类。模式识别高性价比安卓智能手机排行榜_热门促销智能手机推荐你现在浏览的是第三页,共55页v分分类类依据:依据:一个样本的特征向量相当于特征空间中的一点,整个模式样本集合的特征向量可以看成特征空间的一些点,点之间的距离函数可以作为模式相似性的度量,并以此作为模式的分类依据。v聚类分析是按不同对象之间的差异,根据距距离函数的规律离函数的规律进行模式分类的。v距离函数的定义v特征向量的特性 你现在浏览的是第四页,共55页v聚类分析的有效性:聚类分析的有效性:聚类分析方法是否有效,与模式特征向量的分布形式有很大关系。v若向量点的分布是一群一群
3、的,同一群样本密集(距离很近),不同群样本距离很远,则很容易聚类;v若样本集的向量分布聚成一团,不同群的样本混在一起,则很难分类;v对具体对象做聚类分析的关键是选取合适的特征。特征选取得好,向量分布容易区分,选取得不好,向量分布很难分开。你现在浏览的是第五页,共55页v特征空间维数特征空间维数v特征信息的冗余性特征信息的冗余性:在对象分析和特征提取中,往往会提取一些多余的特征,以期增加对象识别的信息量。v高维特征空间分析的复杂性:高维特征空间分析的复杂性:特征空间维数越高,聚类分析的复杂性就越高v高维特征空间降维v降维方法:v相关分析:特征向量的相关矩阵R,分析相关性v主成分分析:以正交变换为
4、理论基础v独立成分分析:以独立性为基础你现在浏览的是第六页,共55页v特征的表示特征的表示v数值表示:数值表示:对于实际问题,为了便于计算机分析和计算,特征必须进行量化。对不同的分析对象,量化方法是不一样的。v连续量的量化:用连续量来度量的特征,只需取其量化值,如长度、重量等。v分级量的量化:度量分析对象等级的量,用有序的离散数字进行量化,比如学生成绩的优,良,中,差可用1,2,3,4等量化表示。v定性量的量化:定性指标,没有数量关系,也没有次序要求。比如,性别特征:男和女,可用0和1来进行表示。你现在浏览的是第七页,共55页v两类模式分类的实例两类模式分类的实例 区分一摊黑白围棋子v选颜色颜
5、色作为特征进行分类,用“1”代表白,“0”代表黑,则很容易分类;v选大小大小作为特征进行分类,则白子和黑子的特征相同,不能分类。你现在浏览的是第八页,共55页1.2相似性测度和聚类准则相似性测度和聚类准则 一、相似性的测度一、相似性的测度v欧欧氏氏距距离离:表征两个模式样本在特征空间中的Euclid距离,v模式X和Z间的距离愈小,则愈相似v注意注意:X和Z的量纲必须一致 v消除量纲不一致对聚类的影响:特征数据的正则化(也称标准化、归一化),使特征变量与量纲无关。你现在浏览的是第九页,共55页v马马氏氏距距离离:表征模式向量X与其均值向量m之间的距离平方,C是模式总体的协方差矩阵,v引入协方差矩
6、阵,排除了样本之间的相关性。欧式距离中,如果特征向量中某一分量的值非常大,那么就会掩盖值小的项所起到的作用,这是欧式距离的不足;当采用马氏距离,就可以屏蔽这一点。因为相关性强的一个分量,对应于协方差矩阵C中对角线上的那一项的值就会大一些。再将这一项取倒数,减小该影响。v当协方差为对角矩阵时,各特征分量相互独立;当协方差为单位矩阵时,马氏距离和欧氏距离相同。你现在浏览的是第十页,共55页其中 分别是样本向量的第k个分量;当m2时,明氏距离就是欧氏距离;当m1时,就是街坊(city block)距离:v一般化的明氏距离一般化的明氏距离你现在浏览的是第十一页,共55页v角度相似性函数角度相似性函数:
7、表征了模式向量x x和z z之间夹角的余弦,反映了几何上的相似性,v当坐标系旋转或者尺度变换,夹角余弦测度均保持不变(对位移和线性变换不成立)v如果x x和z z的分量用二值来表示,0表示不具有某种特征,1表示具有某种特征,则夹角余弦测度表示x x和z z具有共有特征数目的相似性测度。你现在浏览的是第十二页,共55页二、聚类准则的确定二、聚类准则的确定v试探法试探法凭直观和经验,针对实际问题选择相似性测度并确定此相似性测度的阈值,然后选择一定的训练样本来检验测度和阈值的可靠程度,最后按最近邻规则指定某些模式样本属于某一个聚类类别。v举例:举例:对于欧氏距离,它反映了样本间的近邻性,但将一个样本
8、分到不同类别时,还必须规定一距离测度的阈值准则作为聚类的判别准则你现在浏览的是第十三页,共55页v聚类准则函数法聚类准则函数法 聚类就是将样本进行组合分类以使类别可分性为最大,因此聚类准则应是反映类别间相似性(或可分性)的函数;同时,类别又由一个个样本组成,因此类别的可分性与样本间的差异性直接相关。基于此,聚类准则函数J J,应是模式样本集x和模式类别Sj,j=1,2,c的函数,即你现在浏览的是第十四页,共55页vJ J代表了分属于c个聚类类别的全部模式样本与其对应类别模式均值之间的误差平方和;v对于不同的聚类形式,J J值是不同的,聚类的目的是:使J J值达到极小;v由此可见:聚类分析转化为
9、寻找准则函数极值的最优化问题;v此种聚类方法通常称为最小方差划分最小方差划分,适用于各类样本密集且数目相差不多,而不同类各类样本密集且数目相差不多,而不同类间的样本又明显分开的情况间的样本又明显分开的情况(图例解释)(图例解释)把握类内距离与类间距离的问题;把握类内距离与类间距离的问题;v聚类准则函数有许多其他形式。聚类准则函数有许多其他形式。你现在浏览的是第十五页,共55页1.3基于试探的聚类搜索算法基于试探的聚类搜索算法一、按最邻近规则的简单试探法一、按最邻近规则的简单试探法 给N个待分类的模式样本 ,要求按距离阈值T分类到聚类中心v算法过程:算法过程:vStep1:取任意的样本x xi
10、i作为一聚类中的初始值,如令z z1 1=x=x1 1,计算若D21T,确定一新的聚类中心z z2 2=x=x2 2否则x x2 2以z z1 1为中心的聚类;你现在浏览的是第十六页,共55页vStep 2:假如已有聚类中心z z1 1和z z2 2,计算 若D31T和D32T,则确定一新的聚类中心z z3 3=x=x3 3;vStep i:你现在浏览的是第十七页,共55页v讨论讨论v这种方法的优点:计算简单,若模式样本的集合分布的先验知识已知,则可获得较好的聚类结果。v在实际中,对于高维模式样本很难获得准确的先验知识,因此只能选用不同的阈值和起始点来试探,并对结果进行验证。v这种方法在很大程
11、度上依赖于以下因素:v第一个聚类中心的位置(初始化问题初始化问题)v待分类模式样本排列次序(聚类样本的选择问题聚类样本的选择问题)v距离阈值T的大小(判决准则问题判决准则问题)v样本分布的几何性质(样本的固有特性问题样本的固有特性问题)你现在浏览的是第十八页,共55页二、最大最小距离算法二、最大最小距离算法v基本思想基本思想:根据实际问题选择距离函数,以试探类间距离为最大作为预选出聚类中心的条件。核心核心就是:最大类间距离,最小类内距离。v算法过程描述算法过程描述:先按照距离最大最小的方法预选出聚类中心,在按照按最邻近规则将模式分类到聚类中心。对于N个待分类的模式样本 ,要求按最大最小距离法分
12、类到聚类中心 。vStep 1Step 1:选任意一模式样本x xi i作为第一聚类中心z z1 1你现在浏览的是第十九页,共55页vStep2:选离z z1 1最远距离的样本x xj j作为第二聚类中心z z2 2vStep3:逐个计算各模式样本 与 之间的距离,并选出其中的最小距离。vStep4:在所有模式样本的最小值中选出最大距离,若该最大值达到 的一定分数比值以上,则将相应的样本取为第三聚类中心。vStepi:v算法性能分析算法性能分析:算法复杂度增加,在选聚类中心过程中消耗较大的资源。你现在浏览的是第二十页,共55页1.4系统聚类系统聚类v系统聚类:系统聚类:先把每个样本作为一类,然
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 模式识别 监督 学习方法 聚类分析 优秀 PPT
限制150内