液压与气动系统及维护 教学 崔学红液压阀及基本回路 液压控制阀及液压基本回路.pptx
《液压与气动系统及维护 教学 崔学红液压阀及基本回路 液压控制阀及液压基本回路.pptx》由会员分享,可在线阅读,更多相关《液压与气动系统及维护 教学 崔学红液压阀及基本回路 液压控制阀及液压基本回路.pptx(103页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、5.1 概述概述5.2 方向控制阀及方向控制回路方向控制阀及方向控制回路5.3 压力控制阀压力控制阀及压力控制回路5.4 流量控制阀流量控制阀及速度控制回路5.8 比例阀和数字阀比例阀和数字阀返回返回5.5 其他液压其他液压回路5.7 电液电液伺服阀5.6 插装阀5.9 液压控制阀常见故障及其排除方法 第1页/共103页5.1 概述概述1.液压阀分类 (1)按用途分类 液压阀按用途可分为方向控制阀(如单向阀、换向阀)、压力控制阀(如溢流阀、减压阀、顺序阀)和流量控制阀(如节流阀、调速阀)。这三类阀还可根据需要互相组合成为组合阀,如单向顺序阀、单向节流阀、电磁溢流阀等,这样在增加功能的基础上,使
2、得其结构紧凑、连接简单,并提高了效率。(短片)第2页/共103页 (2)按工作原理分类 液压阀按工作原理可分为开关(通断)阀、伺服阀、比例阀等。开关阀各阀口只有开和关两个工作状态,控制后只能在某一状态下工作。伺服阀和比例阀能根据输入信号连续地或按比例地控制阀口开度,进而控制执行元件的工作。(3)按阀芯结构形式分类 液压阀按阀芯形式可分为滑阀、锥阀、球阀和转阀等。第3页/共103页 (4)按安装连接形式分类 (a)螺纹式(管式)安装连接。阀的油口用螺纹管接头与管道及其他元件连接。这种方式适用于简单液压系统。(b)板式安装连接。几个阀的各油口均布置在同一安装面上,并用螺钉固定在与阀有对应油口的连接
3、板上,再用管接头和管道将连接板的相应油口与其他元件连接。(c)集成块式连接。把几个板式安装的阀用螺钉固定在一个带有内部孔道通道体的不同侧面上,构成一个油路单元集成块,集成块中的孔道与各阀沟通组成回路,液压系统由若干个集成块组成。由于拆卸阀时不用拆卸与它们相连的其他元件,因此这种安装连接方式应用较广。第4页/共103页 (d)叠加式安装连接。阀的上下面为连接结合面,各油口分别在这两个面上,并且同规格阀的油口连接尺寸相同。每个阀除其自身的功能外,还起油路通道的作用,阀相互叠装构成回路,不用管道连接,因此结构紧凑,沿程损失很小。一般称该阀为叠加阀。(e)法兰式安装连接。和螺纹式连接相似,只是用法兰代
4、替螺纹管接头。用于通径32 mm以上的大流量阀。它的强度高,连接可靠。(f)插装式安装连接。这类阀没有单独的阀体,由阀芯、阀套等组成的单元体插装在插装块的预制孔中,用连接螺纹或盖板固定,并通过插装块内通道把各插装式阀连通组成回路,插装块起到阀体和管路的作用。这是适应液压传动系统集成化而发展起来的一种新型安装连接方式。插装阀多为大流量阀,但是,目前又出现了螺纹插装阀,可用于小流量阀。第5页/共103页2.液压阀的性能参数 液压阀的性能参数是评价和选用阀的依据。它反映了阀的规格大小和工作特性。在我国液压技术的发展过程中,开发了若干个不同压力等级和不同连接方式的液压阀系列。它们不但性能各有差异,而且
5、参数的表达方式也不相同。阀的规格大小用通径Dg(单位mm)表示。Dg是阀进、出油口的名义尺寸,它和油口的实际尺寸不一定相等,因后者还要受到油液流速等参数的影响。如通径同为10 mm,某电磁换向阀油口的实际直径为11.2 mm,而直角单向阀却是14.7 mm。过去有些系列阀的规格用额定流量来表示;也有的既用了通径,又给出了所对应的流量。但即使是在同一压力级别,对于不同的阀,同一通径所对应的流量也不一定相同。第6页/共103页 液压阀主要有两个参数,即额定压力和额定流量。还有一些和具体阀有关的量,如通过额定流量时的额定压力损失、最小稳定流量、开启压力等等。只要工作压力和流量不超过额定值,液压阀即可
6、正常工作。目前对不同的阀也给出一些不同的数据,如最大工作压力、开启压力、允许背压、最大流量等等。同时给出若干条特性曲线,如压力流量曲线、压力损失流量曲线、进出口压力曲线等,供使用者确定不同状态下的参数数据。这既便于使用,又比较确切地反映了阀的性能。第7页/共103页速度控制回路方向控制回路压力控制回路3.液压基本回路分类多缸工作控制回路第8页/共103页5.2 方向控制阀及方向控制回路方向控制阀及方向控制回路1.单向阀 单向阀分为普通单向阀和液控单向阀两种。(短片)(1)普通单向阀 普通单向阀简称为单向阀,它是一种只允许油液正向流动,不允许反向流动的阀,因此又可称为逆止阀或止回阀。按进出油液流
7、动方向的不同,可分为直通式(管式)和直角式(板式)单向阀两种结构。图5.1所示的是直通式单向阀和它的图形符号。图5.1 单向阀1阀体;2阀芯;3弹簧第9页/共103页 它只有螺纹连接形式,当液流从进油口P1流入时,油液压力克服弹簧3的阻力和阀芯2与阀体1间的摩擦力,顶开带有锥端的阀芯2(小规格直通式单向阀也有用钢球作阀芯的),从出油口P2流出。当液流反向流入时,由于油液压力使阀芯2紧密地压在阀座上,因此使油液不能反向流动。单向阀中的弹簧仅用于使阀芯在阀座上就位。没有弹簧的单向阀必须垂直安放,而且P1口在下面,阀芯通过本身的质量停止在支座上。有弹簧的单向阀,其弹簧的刚度较小,故开启压力很小(通常
8、为0.04 0.1 MPa)。若更换硬弹簧,使其开启压力达到0.2 0.6 MPa,便可当背压阀使用。第10页/共103页 (2)液控单向阀 液控单向阀是一种通入控制压力油后即允许油液双向流动的单向阀。它由单向阀和液控装置两部分组成,如图5.2所示。当控制口K没有通入压力油时,它的作用和普通单向阀一样,压力油只能由P1(正向)流向P2,反向截止。当控制口K通入控制压力油(简称控制油)后,因控制活塞1右侧a腔通泄油口(图中未画出),活塞1右移,推动顶杆2,顶开阀芯3离开阀座,使油口P1和P2沟通,这时的油液正反向均可自由流动。图5.2 液控单向阀图1控制活塞;2顶杆;3阀芯第11页/共103页
9、油液反向流动时,P2口进油压力相当于系统工作压力,通常很高;而P1口的压力也可能很高,这样都要求控制油的压力很大才能顶开阀芯,因而影响了液控单向阀的工作可靠性。解决的办法是:对于P1油口压力较高造成控制活塞背压较大的情况,可减小P1油腔控制活塞的受压面积,并采用外泄口回油以降低背压。以便降低开启阀芯的阻力,达到控制目的。这种结构的阀被称为外泄式液控单向阀;而对于P2油口进油压力很高的情况,可采用先导阀预先卸压。如图5.3所示,在单向阀的锥阀芯1中装一更小的锥阀芯2(有的是钢球),称为先导阀芯(或卸压阀芯)。5.3 带卸荷锥阀液控单向阀1主阀;2卸荷锥阀;3弹簧;4控制活塞第12页/共103页
10、因该阀芯承压面积小,无需多大推力便可将它先行顶开,这样可使P1和P2两油腔通过先导阀芯2的开口相互沟通,使P2腔逐渐卸压,直到阀芯1两端油压接近平衡,这时,控制活塞4便可较容易地将主阀芯推离阀座,将单向阀的反向通道打开。这种结构的阀被称内泄式液控单向阀。液控单向阀中的锥阀阀口应具有良好的反向密封性能,它通常用于保压、锁紧和平衡等回路。第13页/共103页2.单向阀的应用1.用于双泵系统 如图5-4所示两台液压泵轮流工作向系统供油。在这种系统中,必须在泵的出口管路上串联一个单向阀,以防止工作泵输出的压力油倒灌备用泵。图5-4 单向阀用于双泵系统第14页/共103页如图5-5所示,利用单向阀使回油
11、路保持一定的背压力,可增加工作机构的平稳性。此时单向阀应换上较硬的弹簧。2.作背压阀用图5-5第15页/共103页 由换向阀和液控单向阀所组成的锁紧回路见图5.6。锁紧回路的功能是使液压执行元件不工作时切断其进、出油液通路,使液压执行元件能在任意位置上停留,并且不会在外力的作用下移动其位置。3.用液控单向阀实现锁紧图5.6 锁紧回路第16页/共103页 在图5.6中,当换向阀处于左位或右位时,液控单向阀控制油口X2或X1通入压力油,液压缸的回油便可反向流过单向阀口,这时的活塞可向右或向左运动。到了该停留的位置时,只要使换向阀处于中位,因为换向阀的中位机能是H型,控制油直接通油箱,所以控制压力立
12、即消失(Y型中位机能亦可),液控单向阀不再双向导通,液压缸因两腔油液被封死便被锁紧。由于液控单向阀中的单向阀采用座阀结构,密封性好,泄漏极小,故有液压锁之称。当换向阀的中位机能为O或M等型时,从原理上讲不需要液控单向阀也能使液压缸锁紧。但由于换向阀多为滑动式结构,存在较大的泄漏,锁紧功能较差,只能用于锁紧时间短且要求不高处。第17页/共103页2.换向阀及换向回路 换向阀按阀芯结构可分为座阀式换向阀(锥阀式、球阀式等)和滑动式换向阀两种。滑动式换向阀按阀芯相对阀体的运动形式又可分为转阀式和滑阀式两种。座阀式泄漏油很少,滑动式由于在阀芯和阀体之间有配合间隙,泄漏油液是不可避免的。但滑阀结构简单,
13、便于加工制造,应用普遍。(短片)第18页/共103页 (1)换向阀的工作原理和分类 (a)滑动式换向阀的工作原理。换向阀通过变换阀芯在阀体内的相对工作位置,使阀体内诸油口连通或断开,从而控制执行元件的开启、停止或换向。滑动式换向阀的工作原理如图5.7所示。液压缸3两腔不通压力油,处于停止状态。若使换向阀的阀芯1左移,阀体2上的油口P和A油口连通,B油口和O油口连通。压力油经P油口、A油口进入液压缸左腔,活塞右移;右腔油液经B油口、O油口流回油箱。反之,若使阀芯1右移,则P油口和B油口连通,A油口和O油口连通,活塞便左移。图5.7 滑阀式换向阀的工作原理1阀芯;2阀体;3液压缸第19页/共103
14、页 (b)换向阀的分类。滑动式换向阀具有许多优点。如结构简单,压力均衡、操纵力小、控制功能强等。按阀芯在阀体内的工作位置数和换向阀所控制的油口通路数分类:换向阀有二位二通、二位三通、二位四通、二位五通、三位四通、三位五通等类型。不同的位数和通数在阀体内是由阀体上的沉割槽和阀芯上台肩的不同组合形成的。将五通阀的两个回油口和内沟通成一个油口O,即成四通阀。按阀芯换位的控制方式分类:换向阀有手动、机动、电动、液动和电液动等类型。第20页/共103页 (2)滑阀的中位机能 三位换向阀的阀芯在中间位置时,各通口间有不同的连接方式,可满足不同的使用要求。这种连通方式称为换向阀的中位机能。中位机能不同,中位
15、时阀对系统的控制性能也不同。不同中位机能的阀,阀体通用,仅阀芯台肩结构、尺寸及内部通孔情况有一定区别。第21页/共103页在分析和选择换向阀中位机能时,通常应从执行元件的换向平稳性要求、换向位置精度要求、重新启动时能否允许冲击、是否需要卸荷和保压等方面加以考虑。大致说明如下:系统保压 当P油口被封闭时,系统保压,液压泵能用于多缸系统。当P油口不太畅通地与O油口接通时(如X型),系统能保持一定的压力供控制油路使用。系统卸荷 P油口畅通地与O油口接通时,系统卸荷第22页/共103页 换向平稳性与精度 当通向液压执行元件的A油口和B油口都被封闭时,执行元件(如液压缸)换向过程易产生液压冲击,换向不平
16、稳,但换向精度高。反之,当A和B两油口都通O油口时,换向过程中工作部件不易制动,换向精度低,但液压冲击小。启动平稳性 换向阀在中位时,如果液压执行元件某腔通O油口,则启动时该腔内因没有液压油起缓冲作用,启动不太平稳。执行机构在任意位置停止和“浮动”当A油口和B油口封闭时,可使液压执行元件在任意位置上停止不动。当A油口和B油口与P油口接通(单出杆液压缸除外)或与O油口接通时,可使液压执行元件在任意位置上停止,但是在外负载或外驱动作用下,液压执行元件是“浮动”状态,这时可利用其他机构移动工作台,调整其位置。第23页/共103页 (3)几种常用的换向阀 (a)手动换向阀 手动换向阀是用手动杠杆操纵阀
17、芯换位的方向控制阀。按换向定位方式的不同,手动换向阀有钢球定位式和弹簧复位式两种。当操纵手柄的外力取消后,前者因钢球卡在定位沟槽中,可保持阀芯处于换向位置;后者则在弹簧力作用下使阀芯自动回复到初始位置。手动换向阀的结构简单,动作可靠,有些阀还可人为地控制阀口的大小,从而控制执行元件的运动速度。但由于手动换向阀需要人力操纵,故只适用于间歇动作且要求人工控制的小流量场合。使用中须注意:定位装置或弹簧腔的泄漏油需单独用油管接入油箱,否则漏油积聚会产生阻力,以至于不能换向,甚至造成事故。其他换向阀也有同样问题,在使用换向阀必须予以注意。第24页/共103页 (b)机动换向阀 机动换向阀又称行程阀。图6
18、.6所示为二位二通机动换向阀的结构简图和图形符号。这种阀必须安装在液压执行元件驱动的工作部件附近,在工作部件的运动过程中,安装在工作部件一侧的挡块或凸轮移动到预定位置时压下阀芯2,使阀换位。机动换向阀通常是弹簧复位式的二位阀。它的结构简单,动作可靠,换向位置精度高,改变挡块的迎角或凸轮外形,可使阀芯获得合适的移动速度,进而控制换向时间,减小液压执行元件的换向冲击。但这种阀只能安装在工作部件附近,因而连接管路较长,使整个液压装置不紧凑。图6.6 二位二通机动换向阀1阀杆;2阀芯;3弹簧第25页/共103页 (c)电磁换向阀 电磁换向阀是利用电磁铁吸力推动阀心来改变阀的工作位置。在二位电磁换向阀的
19、一端有一个电磁铁,在另一端有一个复位弹簧;在三位电磁换向阀的两端各有一个电磁铁,在阀芯两端各有一个对中弹簧,阀芯在常态时处于中位。对三位电磁换向阀来说,当右端电磁铁通电吸合时,衔铁通过推杆将阀芯推至左端,图形符号表示的换向阀就在右位工作;反之,左端电磁铁通电吸合时,换向阀就在左位工作。图6.7所示为二位三通电磁阀的结构简图和图形符号。图6.7 二位二通电磁阀换向阀1推杆;2阀芯;3弹簧第26页/共103页 它是单电磁铁弹簧复位式,电磁铁通电后阀芯2在衔铁(经过推杆1)的推动下移动到右边位置,电磁铁断电后,阀芯2靠其右端的弹簧3进行复位。二位电磁阀一般都由单电磁铁控制。但无复位弹簧而设有定位机构
20、的双电磁铁二位阀,由于电磁铁断电后仍能保留通电时的状态,从而减少了电磁铁的通电时间,延长了电磁铁的使用寿命,节约了能源;此外,当电源因故断电时,电磁阀的工作状态仍能保留下来,可以避免系统失灵或出现事故,这种“记忆”功能对于一些连续作业的自动化机械和自动线来说,往往是十分需要的。第27页/共103页 电磁铁按所接电源的不同,分交流和直流两种基本类型。交流电磁阀使用方便,启动力大,但换向时间短(约0.03 0.05 s),换向冲击大,噪声大,换向频率低,而且当阀芯被卡住或由于电压低等原因吸合不上时,线圈易烧坏。直流电磁阀需直流电源或整流装置,但换向时间长(约0.1 0.3 s),换向冲击小,换向频
21、率允许较高,而且有恒电流特性,当电磁铁吸合不上时,线圈不会被烧坏,故工作可靠性高。还有一种整型(本机整流型)电磁铁,其上附有二极管整流线路和冲击电压吸收装置,能把接入的交流电整流后自用,因而兼具了前述两者的优点。第28页/共103页 (d)液动换向阀 液动换向阀的阀芯是通过两端密封腔中油液的压差来移动的。图6.8所示为一种液动换向阀的结构简图和图形符号。当阀的控制口K1接通压力油,K2接通回油时,阀芯向右移动;当阀的控制口K2接通压力油,K1接通回油时,阀芯向左移动;当控制口K1和K2都接通回油时,阀芯在两端弹簧和定位套的作用下回到其中间位置。液动换向阀对阀芯的操纵推力很大,因此适用于压力高、
22、流量大、阀芯移动行程长的场合。这种阀通过一些简单的装置可使阀芯的运动速度得到调节。图6.8 三位四通液动换向阀第29页/共103页 (e)电液换向阀 电磁换向阀布置灵活,易于实现自动化,但电磁吸力有限,在高压、大流量的液压传动系统中难于切换。因此,当阀的通径大于10 mm时,常用压力油控制操纵阀芯换位,这就是液动阀。但因液动阀的阀芯换位首先要用另一个小换向阀来改变控制油的流向,因此较少单独使用。小换向阀可以是手动阀、机动阀或电磁阀。标准元件通常采用灵活方便的电磁阀,并将大小两个阀组合在一起,这就是电液换向阀。在电液换向阀中,电磁阀先为控制油换向,从而控制液动阀换向。第30页/共103页 图6.
23、9(a)为电液换向阀的结构简图和图形符号。其工作原理可结合图6.9(b)所示带双点划线方框的组合阀图形符号加以说明,图6.9(c)所示为简化符号。常态时,两个电磁铁都不通电,电磁阀(先导阀)阀芯处于中位,液动阀(主阀)的两端都接通油箱,这时由于对中弹簧的作用,使主阀芯也处于中位。图6.9 三位四通电液换向阀1、7单向阀;2、6节流阀;3、5电磁铁;4电磁阀阀芯;8液动阀阀芯第31页/共103页 当左电磁铁通电时,电磁阀左位工作,控制油经单向阀接通主阀的左端,主阀也左位工作,其右端的油液则经节流阀和电磁阀接通油箱,主阀阀芯的运动速度由右端节流阀的开口大小决定。同理,当左电磁铁断电、右电磁铁通电时
24、,电磁阀处于右位工作,控制油经单向阀接通主阀阀芯的右端,主阀切换到右位工作,其左端的油液则经节流阀和电磁阀而接通油箱,主阀阀芯的运动速度由左端节流阀的开口大小决定。在电液换向阀中,控制主油路的主阀芯不是靠电磁铁的吸力直接推动的,而是靠电磁铁操纵控制油路上的压力油液推动的,因此推力可以很大,操纵也很方便。此外,主阀芯向左或向右的运动速度可分别由左节流阀2或右节流阀6来调节,这使系统中的执行元件能够得到平稳无冲击的换向。所以,这种操纵形式的换向性能比较好,它适用于高压、大流量的液压传动系统。第32页/共103页 在电液换向阀中,如果进入先导电磁阀的压力油(即控制油)来自于主阀的P油口,这种控制油的
25、进油方式称为内部控制,即电磁阀的进油口与主阀的P油口是连通的。其优点是油路简单,但因液压泵的工作压力通常较高,所以控制部分能耗大,只适用于电液换向阀较少的系统;图6.9(a)中的电液换向阀是内部控制方式。如果进入先导电磁阀的压力油引自于主阀P油口以外的油路,如专用的低压泵或系统的某一部分,这种控制油进油方式称为外部控制。如果先导电磁阀的回油口单独接油箱,这种控制油回油方式称为外部回油;如果先导电磁阀的回油口与主阀的O油口相通,则称为内部回油。内回式的优点是无需单设回油管路,但先导阀回油允许背压较小,主回油背压必须小于它才能采用,而外部回油式不受此限制。第33页/共103页 先导阀的进油和回油可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 液压与气动系统及维护 教学 崔学红液压阀及基本回路 液压控制阀及液压基本回路 液压 气动 系统 维护 崔学红 基本 回路 控制
限制150内