玻璃工艺学五.pptx
《玻璃工艺学五.pptx》由会员分享,可在线阅读,更多相关《玻璃工艺学五.pptx(59页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、l5.2玻璃的热学性能玻璃的热学性能u5.2.1 玻璃的热膨胀系数玻璃的热膨胀系数u5.2.2 玻璃的比热玻璃的比热u5.2.3 玻璃的导热性玻璃的导热性u5.2.4 玻璃的热稳定性玻璃的热稳定性第2页/共59页第1页/共59页5.1.1.1理论强度与实际强度理论强度与实际强度l所谓材料的理论强度,就是从不同理论角度来分析所谓材料的理论强度,就是从不同理论角度来分析材料所能承受的最大应力或分离原子(离子或分子材料所能承受的最大应力或分离原子(离子或分子等)所需的最小应力。取决于原子间的相互作用及等)所需的最小应力。取决于原子间的相互作用及热运动。热运动。5.1.1 玻璃的机械强度玻璃的机械强度
2、第3页/共59页第2页/共59页th=xE E:弹性模量:弹性模量 X:为与物质结构和键型有关的常数,一般为:为与物质结构和键型有关的常数,一般为0.10.2E:弹性模量:弹性模量:形成单位新表面所做的功:形成单位新表面所做的功a:每一紧邻原子对的间距:每一紧邻原子对的间距第4页/共59页第3页/共59页材料名称材料名称键型键型弹性模量弹性模量E/Pa系数系数x理论强度理论强度/Pa实际强度实际强度/Pa石英玻璃纤维石英玻璃纤维离子离子-共价键共价键12.410100.11.2410101.051010玻璃纤维玻璃纤维离子离子-共价键共价键7.210100.10.7210100.20.3101
3、0块状玻璃块状玻璃离子离子-共价键共价键7.210100.10.721010815107氯化钠氯化钠离子键离子键4.010100.060.2410100.44107有机玻璃有机玻璃共价键共价键0.40.610100.10.040.0610101015107钢钢金属键金属键2010100.153.010100.10.21010不同材料的弹性模量、理论强度与实际强度不同材料的弹性模量、理论强度与实际强度第5页/共59页第4页/共59页l 块状玻璃的实际强度与理论强度相差块状玻璃的实际强度与理论强度相差23个数量级。个数量级。l原因:玻璃的脆性、玻璃中存在微裂纹(尤其是表原因:玻璃的脆性、玻璃中存在
4、微裂纹(尤其是表面微裂纹)和内部不均匀区及缺陷的存在造成应力面微裂纹)和内部不均匀区及缺陷的存在造成应力集中。集中。第6页/共59页第5页/共59页5.1.1.2玻璃的断裂力学玻璃的断裂力学l断裂力学的基本概念断裂力学的基本概念u脆性断裂理论脆性断裂理论 假定在一个无限大的平板内有一椭圆形裂纹,它与外力垂假定在一个无限大的平板内有一椭圆形裂纹,它与外力垂直分布,长度为直分布,长度为2c,在一定应力,在一定应力的作用下,此裂纹处的弹的作用下,此裂纹处的弹性应变能为:性应变能为:而同时产生两个新裂口表面,相应的表面断裂能为:而同时产生两个新裂口表面,相应的表面断裂能为:第7页/共59页第6页/共5
5、9页因而在外力作用下,裂纹得以扩展的条件为:因而在外力作用下,裂纹得以扩展的条件为:得到:得到:这时的这时的相当于断裂应力相当于断裂应力f,则:,则:第8页/共59页第7页/共59页l玻璃材料的缺陷及裂纹的扩展玻璃材料的缺陷及裂纹的扩展u玻璃材料由于在其表面和内部存在着不同的杂质、玻璃材料由于在其表面和内部存在着不同的杂质、缺陷缺陷或微不均匀区,在这些区域引起应力的集中或微不均匀区,在这些区域引起应力的集中导致导致微裂纹微裂纹的产生。裂纹尖端处的应力超过临界的产生。裂纹尖端处的应力超过临界应力时,裂纹就迅速分裂,使应力时,裂纹就迅速分裂,使玻璃断裂玻璃断裂。第9页/共59页第8页/共59页u玻
6、璃断裂过程分为两个阶段:玻璃断裂过程分为两个阶段:v第一阶段主要是初生裂纹缓慢增长,形成断裂表面的镜第一阶段主要是初生裂纹缓慢增长,形成断裂表面的镜面部分;面部分;v第二阶段,随着初生裂纹的增长,次生裂纹同时产生和第二阶段,随着初生裂纹的增长,次生裂纹同时产生和增长,在其相互相遇时形成以镜面为中心的辐射状碎裂增长,在其相互相遇时形成以镜面为中心的辐射状碎裂条纹。条纹。第10页/共59页第9页/共59页第11页/共59页第10页/共59页从裂纹扩展过程中的能量平衡,推导出临界裂纹应力从裂纹扩展过程中的能量平衡,推导出临界裂纹应力c的一般式:的一般式:近似为:近似为:第12页/共59页第11页/共
7、59页5.1.1.3 影响玻璃强度的因素影响玻璃强度的因素l化学键、化学组成化学键、化学组成u键强:桥氧,非桥氧键强不同;碱金属、碱土金键强:桥氧,非桥氧键强不同;碱金属、碱土金属键强也不同。属键强也不同。u键数:网络的疏密程度。键数:网络的疏密程度。u化学组成:不同组成的玻璃结构骨架不同。化学组成:不同组成的玻璃结构骨架不同。第13页/共59页第12页/共59页第14页/共59页第13页/共59页l表面微裂纹表面微裂纹u格里菲斯认为玻璃破坏时是从表面微裂纹开始;格里菲斯认为玻璃破坏时是从表面微裂纹开始;u据测定,据测定,1mm2玻璃表面上含有玻璃表面上含有300个左右的微裂纹;个左右的微裂纹
8、;u微裂纹的存在使玻璃抗张、抗折强度仅为抗压强度的微裂纹的存在使玻璃抗张、抗折强度仅为抗压强度的1/101/15;u提高玻璃强度的两个途径:提高玻璃强度的两个途径:v减少和消除玻璃的表面缺陷;减少和消除玻璃的表面缺陷;v使玻璃表面形成压应力,以克服表面微裂纹的作用。使玻璃表面形成压应力,以克服表面微裂纹的作用。第15页/共59页第14页/共59页l微不均匀性微不均匀性u电镜观察玻璃中存在微相和微不均匀结构;电镜观察玻璃中存在微相和微不均匀结构;u结构中的微不均匀性降低了玻璃强度;结构中的微不均匀性降低了玻璃强度;u原因:微相之间易生成裂纹,两相交界面间结合力较弱,原因:微相之间易生成裂纹,两相
9、交界面间结合力较弱,两相成分不同,热膨胀系数不同,产生应力。两相成分不同,热膨胀系数不同,产生应力。第16页/共59页第15页/共59页l玻璃中的宏观、微观缺陷玻璃中的宏观、微观缺陷u宏观缺陷:气泡、条纹、结石。因成分与主体玻璃不一致,宏观缺陷:气泡、条纹、结石。因成分与主体玻璃不一致,热膨胀系数不同而造成内应力;热膨胀系数不同而造成内应力;u微观缺陷:点缺陷、局部析晶、晶界。常在宏观缺陷的地微观缺陷:点缺陷、局部析晶、晶界。常在宏观缺陷的地方集中导致裂纹产生。方集中导致裂纹产生。第17页/共59页第16页/共59页l活性介质活性介质u活性介质指水、酸、碱、某些盐类等。活性介质指水、酸、碱、某
10、些盐类等。u活性介质对玻璃表面的两种作用活性介质对玻璃表面的两种作用v一是渗入裂纹像楔子一样使裂纹扩展;一是渗入裂纹像楔子一样使裂纹扩展;v二是与玻璃起化学作用破坏结构。二是与玻璃起化学作用破坏结构。u活性介质中玻璃的强度降低。活性介质中玻璃的强度降低。u玻璃强度的测定最好在真空或液氮中进行,以免玻璃强度的测定最好在真空或液氮中进行,以免受活性介质的影响。受活性介质的影响。第18页/共59页第17页/共59页l温度温度u低温和高温对玻璃强度的影响是不同的;低温和高温对玻璃强度的影响是不同的;u接近绝对零度至接近绝对零度至200,强度随温度升高而降低;,强度随温度升高而降低;u200为强度最低点
11、;为强度最低点;u高于高于200,强度逐渐增大。,强度逐渐增大。第19页/共59页第18页/共59页第20页/共59页第19页/共59页 l玻璃中的应力玻璃中的应力u玻璃中的残余应力,特别是分布玻璃中的残余应力,特别是分布不均匀不均匀的残余应的残余应力,使强度大为降低。力,使强度大为降低。u玻璃钢化后,表面产生玻璃钢化后,表面产生均匀均匀的压应力,内部形成的压应力,内部形成均匀的张应力,机械强度大大提高。均匀的张应力,机械强度大大提高。第21页/共59页第20页/共59页l玻璃的疲劳现象玻璃的疲劳现象u定义:常温下,玻璃的破坏强度随加荷速度或加荷时间定义:常温下,玻璃的破坏强度随加荷速度或加荷
12、时间而变化。加荷速度越大或加荷时间越长,破坏强度越小,而变化。加荷速度越大或加荷时间越长,破坏强度越小,短时间不会破坏的负荷,时间久了就可能破坏,这种现短时间不会破坏的负荷,时间久了就可能破坏,这种现象称为象称为玻璃的疲劳现象玻璃的疲劳现象。第22页/共59页第21页/共59页l定义:材料在外力作用下发生变形,外力去掉后能定义:材料在外力作用下发生变形,外力去掉后能恢复原来形状的性质。恢复原来形状的性质。l表征弹性的参数表征弹性的参数u弹性模量弹性模量 Eu剪切模量剪切模量 Gu泊松比泊松比 u体积压缩模量体积压缩模量 K5.1.2 玻璃的弹性玻璃的弹性第23页/共59页第22页/共59页第2
13、4页/共59页第23页/共59页5.1.2.1弹性模量与成分的关系弹性模量与成分的关系lE主要取决于内部质点间主要取决于内部质点间化学键的强度化学键的强度,同时也与,同时也与结构结构有关。质点间化学键的强度越大,变形越小,有关。质点间化学键的强度越大,变形越小,E就越大;玻璃结构越坚实,就越大;玻璃结构越坚实,E也越大。也越大。第25页/共59页第24页/共59页u键强:键强:与原子半径和价电子数有关。与原子半径和价电子数有关。E是原子序是原子序数的周期函数。同一族元素,随原子序数的递增数的周期函数。同一族元素,随原子序数的递增和原子半径的增大,和原子半径的增大,E降低。降低。与离子间的吸引力
14、与离子间的吸引力 呈直线关系。呈直线关系。同一氧化同一氧化物处于高配位时物处于高配位时E比处于低配位时高。比处于低配位时高。结论结论:离子半径较大、电荷较低的离子不利于提:离子半径较大、电荷较低的离子不利于提高高E,相反有利于提高,相反有利于提高E。第26页/共59页第25页/共59页u结构:石英玻璃具有三维空间的结构:石英玻璃具有三维空间的架状架状结构,结构,E较较高,高,705.6108Pa;纯;纯B2O3玻璃具有玻璃具有层状层状结构,结构,E很低,仅很低,仅175108Pa。硼反常硼反常 硼铝反常硼铝反常 结论:结论:E的增减实质上反映了玻璃内部结构的变的增减实质上反映了玻璃内部结构的变
15、化。化。第27页/共59页第26页/共59页5.1.2.2 弹性模量与温度的关系弹性模量与温度的关系l大多数硅酸盐玻璃大多数硅酸盐玻璃E随温度升高而降低。随温度升高而降低。l对于石英玻璃、高硅氧玻璃、派来克斯玻璃,对于石英玻璃、高硅氧玻璃、派来克斯玻璃,E与与温度的关系出现温度的关系出现反常反常,随温度升高而增加。,随温度升高而增加。第28页/共59页第27页/共59页5.1.2.3 弹性模量与热处理的关系弹性模量与热处理的关系l淬火玻璃比退火玻璃低,一般低淬火玻璃比退火玻璃低,一般低27%。l玻璃纤维(玻璃纤维(774.2108Pa)比块状玻璃)比块状玻璃(803.6108Pa)低。)低。l
16、微晶化后微晶化后E增高,增高幅度主要取决于析出的主晶增高,增高幅度主要取决于析出的主晶相的种类和性质。相的种类和性质。第29页/共59页第28页/共59页5.1.3 玻璃的硬度和脆性玻璃的硬度和脆性5.1.3.1 玻璃的硬度玻璃的硬度l硬度:固体材料抵抗另一固体深入其内部而不产生硬度:固体材料抵抗另一固体深入其内部而不产生残余形变的能力。残余形变的能力。l表示方法:表示方法:u莫氏硬度(划痕法)莫氏硬度(划痕法)u显微硬度(压痕法)显微硬度(压痕法)u研磨硬度(磨损法)研磨硬度(磨损法)u刻化硬度(刻痕法)刻化硬度(刻痕法)第30页/共59页第29页/共59页l一般玻璃用一般玻璃用显微硬度显微
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 玻璃 工艺学
限制150内