第2章 光纤和光缆优秀PPT.ppt
《第2章 光纤和光缆优秀PPT.ppt》由会员分享,可在线阅读,更多相关《第2章 光纤和光缆优秀PPT.ppt(82页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第2章 光纤和光缆现在学习的是第1页,共82页 2.1.1光纤结构光纤结构 光纤(Optical Fiber)是由中心的纤芯和外围的包层同轴组成的圆柱形细丝。纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。包层为光的传输提供反射面和光隔离,并起一定的机械保护作用。设纤芯和包层的折射率分别为n1和n2,光能量在光纤中传输的必要条件是n1n2。纤芯和包层的相对折射率差=(n1-n2)/n1的典型值,一般单模光纤为0.3%0.6%,多模光纤为1%2%。越大,把光能量束缚在纤芯的能力越强,但信息传输容量却越小。2.1光纤结构和类型光纤结构和类型现在学习的是第2页,共82页图2.1 光纤
2、的外形现在学习的是第3页,共82页 2.1.2光纤类型光纤类型 光纤种类很多,这里只讨论作为信息传输波导用的由高纯度石英(SiO2)制成的光纤。实用光纤主要有三种基本类型,图2.2示出其横截面的结构和折射率分布,光线在纤芯传播的路径,以及由于色散引起的输出脉冲相对于输入脉冲的畸变。这些光纤的主要特征如下。突变型多模光纤(StepIndex Fiber,SIF)如图2.2(a),纤芯折射率为n1保持不变,到包层突然变为n2。这种光纤一般纤芯直径2a=5080 m,光线以折线形状沿纤芯中心轴线方向传播,特点是信号畸变大。现在学习的是第4页,共82页 渐变型多模光纤(GradedIndex Fibe
3、r,GIF)如图2.2(b),在纤芯中心折射率最大为n1,沿径向r向外围逐渐变小,直到包层变为n2。这种光纤一般纤芯直径2a为50m,光线以正弦形状沿纤芯中心轴线方向传播,特点是信号畸变小。单模光纤(SingleMode Fiber,SMF)如图2.2(c),折射率分布和突变型光纤相似,纤芯直径只有810 m,光线以直线形状沿纤芯中心轴线方向传播。因为这种光纤只能传输一个模式(两个偏振态简并),所以称为单模光纤,其信号畸变很小。相对于单模光纤而言,突变型光纤和渐变型光纤的纤芯直径都很大,可以容纳数百个模式,所以称为多模光纤。渐变型多模光纤和单模光纤,包层外径2b都选用125m。现在学习的是第5
4、页,共82页图 2.2三种基本类型的光纤(a)突变型多模光纤;(b)渐变型多模光纤;(c)单模光纤 现在学习的是第6页,共82页 实际上,根据应用的需要,可以设计折射率介于SIF和GIF之间的各种准渐变型光纤。为调整工作波长或改善色散特性,可以在图2.2(c)常规单模光纤的基础上,设计许多结构复杂的特种单模光纤。最有用的若干典型特种单模光纤的横截面结构和折射率分布示于图2.3,这些光纤的特征如下。双包层光纤如图2.3(a)所示,折射率分布像W形,又称为W型光纤。这种光纤有两个包层,内包层外直径2a与纤芯直径2a的比值a/a2。适当选取纤芯、外包层和内包层的折射率n1、n2和n3,调整a值,可
5、以 得 到 在1.31.6m之 间 色 散 变 化 很 小 的 色 散 平 坦 光 纤(DispersionFlattened Fiber,DFF),或把零色散波长移到1.55 m的色散移位光纤(DispersionShifted Fiber,DSF)。现在学习的是第7页,共82页 图 2.3 典型特种单模光纤(a)双包层;(b)三角芯;(c)椭圆芯 现在学习的是第8页,共82页 三角芯光纤如图2.3(b)所示,纤芯折射率分布呈三角形,这是一种改进的色散移位光纤。这种光纤在1.55 m有微量色散,有效面积较大,适合于密集波分复用和孤子传输的长距离系统使用,康宁公司称它为长距离系统光纤,这是一种
6、非零色散光纤。椭圆芯光纤如图2.3(c)所示,纤芯折射率分布呈椭圆形。这种光纤具有双折射特性,即两个正交偏振模的传输常数不同。强双折射特性能使传输光保持其偏振状态,因而又称为双折射光纤或偏振保持光纤。以上各种特征不同的光纤,其用途也不同。突变型多模光纤信号畸变大,相应的带宽只有1020 MHzkm,只能用于小容量(8 Mb/s以下)短距离(几km以内)系统。现在学习的是第9页,共82页 渐变型多模光纤的带宽可达12 GHzkm,适用于中等容量(34140 Mb/s)中等距离(1020 km)系统。大容量(565 Mb/s2.5 Gb/s)长距离(30 km以上)系统要用单模光纤。特种单模光纤大
7、幅度提高光纤通信系统的水平。1.55m色散移位光纤实现了10 Gb/s容量的100 km的超大容量超长距离系统。色散平坦光纤适用于波分复用系统,这种系统可以把传输容量提高几倍到几十倍。三角芯光纤有效面积较大,有利于提高输入光纤的光功率,增加传输距离。外差接收方式的相干光系统要用偏振保持光纤,这种系统最大优点是提高接收灵敏度,增加传输距离。现在学习的是第10页,共82页2.2 光纤传输原理光纤传输原理 要详细描述光纤传输原理,需要求解由麦克斯韦方程组导出的波动方程。但在极限(波数k=2/非常大,波长0)条件下,可以用几何光学的射线方程作近似分析。几何光学的方法比较直观,容易理解,但并不十分严格。
8、不管是射线方程还是波动方程,数学推演都比较复杂,我们只选取其中主要部分和有用的结果。现在学习的是第11页,共82页 2.2.1几何光学方法几何光学方法 用几何光学方法分析光纤传输原理,我们关注的问题主要是光束在光纤中传播的空间分布和时间分布,并由此得到数值孔径和时间延迟的概念。1.突变型多模光纤突变型多模光纤 数值孔径为简便起见,以突变型多模光纤的交轴(子午)光线为例,进一步讨论光纤的传输条件。设纤芯和包层折射率分别为n1和n2,空气的折射率n0=1,纤芯中心轴线与z轴一致,如图2.4。光线在光纤端面以小角度从空气入射到纤芯(n0n2)。现在学习的是第12页,共82页 图 2.4 突变型多模光
9、纤的光线传播原理现在学习的是第13页,共82页 改变角度,不同相应的光线将在纤芯与包层交界面发生反射或折射。根据全反射原理,存在一个临界角c,当c时,相应的光线将在交界面折射进入包层并逐渐消失,如光线3。由此可见,只有在半锥角为c的圆锥内入射的光束才能在光纤中传播。现在学习的是第14页,共82页 根据这个传播条件,定义临界角c的正弦为数值孔径(Numerical Aperture,NA)。根据定义和斯奈尔定律 式中=(n1-n2)/n1为纤芯与包层相对折射率差。设=0.01,n1=1.5,得到NA=0.21或c=12.2。NA表示光纤接收和传输光的能力,NA(或c)越大,光纤接收光的能力越强,
10、从光源到光纤的耦合效率越高。对于无损耗光纤,在c内的入射光都能在光纤中传输。NA越大,纤芯对光能量的束缚越强,光纤抗弯曲性能越好。现在学习的是第15页,共82页 但NA越大 经光纤传输后产生的信号畸变越大,因而限制了信息传输容量。所以要根据实际使用场合,选择适当的NA。时间延迟现在我们来观察光线在光纤中的传播时间。根据图2.4,入射角为的光线在长度为L(ox)的光纤中传输,所经历的路程为l(oy),在不大的条件下,其传播时间即时间延迟为 式中c为真空中的光速。由式(2.4)得到最大入射角(=c)和最小入射角(=0)的光线之间时间延迟差近似为 现在学习的是第16页,共82页 这种时间延迟差在时域
11、产生脉冲展宽,或称为信号畸变。由此可见,突变型多模光纤的信号畸变是由于不同入射角的光线经光纤传输后,其时间延迟不同而产生的。设光纤NA=0.20,n1=1.5,L=1 km,根据式(2.5)得到脉冲展宽=44ns,相当于10MHzkm左右的带宽。现在学习的是第17页,共82页 2.单模光纤的模式特性单模光纤的模式特性 单模条件和截止波长从图2.8和表2.2可以看到,传输模式数目随V值的增加而增多。当V值减小时,不断发生模式截止,模式数目逐渐减少。特别值得注意的是当V2.405时,只有HE11(LP01)一个模式存在,其余模式全部截止。HE11称为基模,由两个偏振态简并而成。由此得到单模传输条件
12、为 V=(2.36)由式(2.36)可以看到,对于给定的光纤(n1、n2和a确定),存在一个临界波长c,当c时,是单模传输,这个临界波长c称为截止波长。由此得到现在学习的是第18页,共82页 V=2.405 或c=光强分布和模场半径通常认为单模光纤基模HE11的电磁场分布近似为高斯分布 (r)=A exp 式中,A为场的幅度,r为径向坐标,w0为高斯分布1/e点的半宽度,称为模场半径。实际单模光纤的模场半径w0是用测量确定的,常规单模光纤用纤芯半径a归一化的模场半径的经验公式为 0.65+1.619V-1.5+2.879V-6=0.65+0.434 +0.0149现在学习的是第19页,共82页
13、 w0/a与V(或/c)的关系示于图2.10。图中是基模HE11的注入效率。由图可见,在3V1.4(0.8/c96%。双折射和偏振保持光纤前面的讨论都假设了光纤具有完美的圆形横截面和理想的圆对称折射率分布,而且沿光纤轴向不发生变化。因此,HE11(LP01)模的x 偏振模HEx11(Ey=0)和y 偏振模HEy11(Ex=0)具有相同的传输常数(x=y),两个偏振模完全简并。但是实际光纤难以避免的形状不完善或应力不均匀,必定造成折射率分布各向异性,使两个偏振模具有不同的传输常数(xy)。因此,在传输过程要引起偏振态的变化,我们把两个偏振模传输常数的差(x-y)定义为双折射,通常用归一化双折射B
14、来表示,现在学习的是第20页,共82页图 2.10 用对LP01模给出最佳注入效率的高斯场分布时,归一化模场半径w0/a和注入效率与归一化波长/c或归一化频率V的函数关系 现在学习的是第21页,共82页 式中,=(x+y)/2为两个传输常数的平均值。把两个正交偏振模的相位差达到2的光纤长度定义为拍长Lb Lb=(2.40)现在学习的是第22页,共82页 存在双折射,要产生偏振色散,因而限制系统的传输容量。许多单模光纤传输系统都要求尽可能减小或消除双折射。一般单模光纤B值虽然不大,但是通过光纤制造技术来消除它却十分困难。合理的解决办法是通过光纤设计,人为地引入强双折射,把B值增加到足以使偏振态保
15、持不变,或只保存一个偏振模式,实现单模单偏振传输。强双折射光纤和单模单偏振光纤为偏振保持光纤。获得偏振保持光纤的方法很多,例如引入形状各向异性的椭圆芯光纤。现在学习的是第23页,共82页2.3光纤传输特性光纤传输特性 光信号经光纤传输后要产生损耗和畸变(失真),因而输出信号和输入信号不同。对于脉冲信号,不仅幅度要减小,而且波形要展宽。产生信号畸变的主要原因是光纤中存在色散。损耗和色散是光纤最重要的传输特性。损耗限制系统的传输距离,色散则限制系统的传输容量。本节讨论光纤的色散和损耗的机理和特性,为光纤通信系统的设计提供依据。现在学习的是第24页,共82页 2.3.1光纤色散光纤色散 1.色散、色
16、散、带宽和脉冲展宽带宽和脉冲展宽 色散(Dispersion)是在光纤中传输的光信号,由于不同成分的光的时间延迟不同而产生的一种物理效应。色散一般包括模式色散、材料色散和波导色散。模式色散是由于不同模式的时间延迟不同而产生的,它取决于光纤的折射率分布,并和光纤材料折射率的波长特性有关.材料色散是由于光纤的折射率随波长而改变,以及模式内部不同波长成分的光(实际光源不是纯单色光),其时间延迟不同而产生的。这种色散取决于光纤材料折射率的波长特性和光源的谱线宽度。波导色散是由于波导结构参数与波长有关而产生的,它取决于波导尺寸和纤芯与包层的相对折射率差。现在学习的是第25页,共82页 色散对光纤传输系统
17、的影响,在时域和频域的表示方法不同。如果信号是模拟调制的,色散限制带宽(Bandwith);如果信号是数字脉冲,色散产生脉冲展宽(Pulse broadening)。所以,色散通常用3 dB光带宽f3dB或脉冲展宽表示。用脉冲展宽表示时,光纤色散可以写成 =(2n+2m+2w)1/2 式中n、m、w分别为模式色散、材料色散和波导色散所引起的脉冲展宽的均方根值。现在学习的是第26页,共82页图 2.11 光纤带宽和脉冲展宽的定义 现在学习的是第27页,共82页 2.多模光纤的色散多模光纤的色散 多模光纤折射率分布的普遍公式用式(2.6)n(r)表示,第q阶模式群的传输常数用式(2.34)的q表示
18、。单位长度光纤第q阶模式群产生的时间延迟 q=式中,c为光速,k=2/,为光波长。设光源的功率谱很陡峭,其rms谱线宽度为,每个传输模式具有相同的功率,经复杂的计算,得到长度为L的多模光纤rms脉冲展宽为现在学习的是第28页,共82页 模间为模式色散产生的rms脉冲展宽。当g时,相应于突变型光纤,由式(2.50a)简化得到 模间(g)当g=2+时,相应于rms脉冲展宽达到最小值的渐变型光纤,由式(2.50a)简化得到现在学习的是第29页,共82页 模间(g=2+)由此可见,渐变型光纤的rms脉冲展宽比突变型光纤减小/2倍。模内为模内色散产生的rms脉冲展宽,其中第一项为材料色散,第三项为波导色
19、散,第二项包含材料色散和波导色散的影响。对于一般多模光纤,第一项是主要的,其他两项可以忽略,由式(2.50b)简化得到模间现在学习的是第30页,共82页 图2.12示出三种不同光源对应的rms脉冲展宽和折射率分布指数g的关系。由图可见,rms脉冲展宽随光源谱线宽度增大而增大,并在很大程度上取决于折射率分布指数g。当g=g0时,达到最小值。g的最佳值g0=2+,取决于光纤结构参数和材料的波长特性。当用分布反馈激光器时,最小约为0.018 ns,相应的带宽达到10 GHzkm。3.单模光纤的色散单模光纤的色散 色度色散理想单模光纤没有模式色散,只有材料色散和波导色散。材料色散和CM)波导色散总称为
20、色度色散(Chromatic Dispersion),常简称为色散,它是时间延迟随波长变化产生的结果。现在学习的是第31页,共82页 偏振模色散:在理想完善的单模光纤中,HE11模由两个具有相同传输常数相互垂直的偏振模简并组成。但实际光纤不可避免地存在一定缺陷,如纤芯椭圆度和内部残余应力,使两个偏振模的传输常数不同,这样产生的时间延迟差称为偏振模色散或双折射色散。现在学习的是第32页,共82页 偏振模色散取决于光纤的双折射,由=x-ynxk-nyk得到,=(2.58)式中,nx和ny分别为x-和y-方向的等效折射率。偏振模色散本质上是模式色散,由于模式耦合是随机的,因而它是一个统计量。目前虽没
21、有统一的技术标准,但一般要求偏振模色散小于0.5ps/km。由于存在偏振模色散,即使在色度色散C()=0的波长,带宽也不是无限大,见图2.14。现在学习的是第33页,共82页 2.3.2光纤损耗光纤损耗 由于损耗的存在,在光纤中传输的光信号,不管是模拟信号还是数字脉冲,其幅度都要减小。光纤的损耗在很大程度上决定了系统的传输距离。在最一般的条件下,在光纤内传输的光功率P随距离z的变化,可以用下式表示 (2.59)式中,是损耗系数。设长度为L(km)的光纤,输入光功率为Pi,根据式(2.59),输出光功率应为现在学习的是第34页,共82页 Po=Piexp(-L)习惯上的单位用dB/km,由式(2
22、.60)得到损耗系数 =1.损耗的机理损耗的机理 图2.15是单模光纤的损耗谱,图中示出各种机理产生的损耗与波长的关系,这些机理包括吸收损耗和散射损耗两部分。吸收损耗是由SiO2材料引起的固有吸收和由杂质引起的吸收产生的。由材料电子跃迁引起的吸收带发生在紫外(UV)区(7m),由于SiO2是非晶状材料,两种吸收带从不同方向伸展到可见光区。现在学习的是第35页,共82页图 2.15 单模光纤损耗谱,示出各种损耗机理 现在学习的是第36页,共82页 由此而产生的固有吸收很小,在0.81.6m波段,小于0.1dB/km,在1.31.6m波段,小于0.03dB/km。光纤中的杂质主要有过渡金属(例如F
23、e2+、Co2+、Cu2+)和氢氧根(OH-)离子,这些杂质是早期实现低损耗光纤的障碍。由于技术的进步,目前过渡金属离子含量已经降低到其影响可以忽略的程度。由氢氧根离子(OH-)产生的吸收峰出现在0.95m、1.24 m和1.39 m波长,其中以1.39 m的吸收峰影响最为严重。目前OH-的含量已经降低到10-9以下,1.39m吸收峰损耗也减小到0.5 dB/km以下。散射损耗主要由材料微观密度不均匀引起的瑞利(Rayleigh)散射和由光纤结构缺陷(如气泡)引起的散射产生的。结构缺陷散射产生的损耗与波长无关。现在学习的是第37页,共82页 瑞利散射损耗R与波长四次方成反比,可用经验公式表示为
24、R=A/4,瑞利散射系数A取决于纤芯与包层折射率差。当分别为0.2%和0.5%时,A分别为0.86和1.02。瑞利散射损耗是光纤的固有损耗,它决定着光纤损耗的最低理论极限。如果=0.2%,在1.55m波长,光纤最低理论极限为0.149 dB/km。2.实用光纤的损耗谱实用光纤的损耗谱 根据以上分析和经验,光纤总损耗与波长的关系可以表示为=4+B+CW()+IR()+UV()现在学习的是第38页,共82页 式中,A为瑞利散射系数,B为结构缺陷散射产生的损耗,CW()、IR()和UV()分别为杂质吸收、红外吸收和紫外吸收产生的损耗。由图2.16看到:从多模突变型(SIF)、渐变型(GIF)光纤到单
25、模(SMF)光纤,损耗依次减小。在0.81.55 m波段内,除吸收峰外,光纤损耗随波长增加而迅速减小。在1.39m OH-吸收峰两侧1.31 m和1.55 m存在两个损耗极小的波长“窗口”。另一方面,从色散的讨论中看到:从多模SIF、GIF光纤到SMF光纤,色散依次减小(带宽依次增大)。石英单模光纤的零色散波长在1.31 m,还可以把零色散波长从1.31 m移到1.55m,实现带宽最大损耗最小的传输。正因为这些特性,使光纤通信从SIF、GIF光纤发展到SMF光纤,从短波长(0.85 m)“窗口”发展到长波长(1.31 m和1.55 m)“窗口”,使系统技术水平不断提高。现在学习的是第39页,共
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第2章 光纤和光缆优秀PPT 光纤 光缆 优秀 PPT
限制150内