2016年中考数学试卷分类汇编解析_动态问题.pdf
《2016年中考数学试卷分类汇编解析_动态问题.pdf》由会员分享,可在线阅读,更多相关《2016年中考数学试卷分类汇编解析_动态问题.pdf(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、动态问题一、选择题1.(2016)如图,O 是边长为 4cm 的正方形 ABCD 的中心,M 是 BC 的中点,动点 P 由 A开始沿折线 ABM 方向匀速运动,到M 时停止运动,速度为1cm/s.设 P 点的运动时间为t(s),点 P 的运动路径与 OA、OP 所围成的图形面积为S(cm),则描述面积 S(cm)与时间 t(s)的关系的图像可以是(A)222.如图,在 ABC 中,AB=10,AC=8,BC=6,以边 AB 的中点 O 为圆心,作半圆与AC相切,点P,Q 分别是边 BC 和半圆上的动点,连接PQ,则PQ 长的最大值与最小值的和是(C)A6B2+1 C9D3.如图,在ABC 中
2、,ACB=90,AC=4,BC=2P 是 AB 边上一动点,PDAC 于点 D,点 E 在 P 的右侧,且PE=1,连结CEP 从点 A 出发,沿AB 方向运动,当E 到达点 B 时,P 停止运动在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是(C)A一直减小 B一直不变 C先减小后增大 D先增大后减小4 如图,正 ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且APD=60,PD 交 AB 于点 D设 BP=x,BD=y,则 y 关于 x 的函数图象大致是(C)ABCD解答题1(本题 14 分)综合与探究如图,在平面直角坐标系中,已知抛物线y ax2bx8与 x
3、 轴交于 A,B 两点,与 y轴交于点 C,直线 l 经过坐标原点 O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接 CE,已知点 A,D 的坐标分别为(2,0),(6,8)(1)求抛物线的函数表达式,并分别求出点B 和点 E 的坐标;(2)试探究抛物线上是否存在点F,使FOEFCE,若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点 P 是 y 轴负半轴上的一个动点,设其坐标为(0,m),直线 PB 与直线 l 交于点 Q 试探究:当 m 为何值时,OPQ是等腰三角形解答:(1)抛物线y ax2bx8经过点 A(2,0),D(6,8),14a 2b8 0a 解得2(1
4、 分)36a 6b8 8b 3抛物线的函数表达式为y 1x23x 8(2 分)2y 121252,抛物线的对称轴为直线x3又抛物线与 x 轴交x 3x 8 x 3222于 A,B 两点,点 A 的坐标为(2,0)点 B 的坐标为(8,0)(4 分)4k设直线 l 的函数表达式为y kx点 D(6,8)在直线 l 上,6k=8,解得3直线 l 的函数表达式为y 4x(5 分)3点 E 为直线 l 和抛物线对称轴的交点点 E 的横坐标为 3,纵坐标为434,即点3E 的坐标为(3,4)(6 分)(2)抛物线上存在点 F,使FOEFCE点 F 的坐标为(3 17,4)或(3 17,4)(8 分)(3
5、)解法一:分两种情况:当OP OQ时,OPQ是等腰三角形,OE 32 42 5,过点 E 作直线 ME/PB,交 y 轴于点点 E 的坐标为(3,4)M,交x 轴于点 H,则分)OMOE,OM OE 5(9OPOQ点 M 的坐标为(0,5)1k yk x53k 54设直线 ME 的表达式为,1,解得1,ME 的函数表达式为1311y x5,令 y=0,得x50,解得 x=15,点 H 的坐标为(15,0)(10 分)33又MH/PB,8OPOBm8m,即(11 分),3OMOH515当QO QP时,OPQ是等腰三角形当 x=0 时,y 12,x 3x 8 8,点 C 的坐标为(0,8)2CE
6、32(84)2 5,OE=CE,1 2,又因为QO QP,1 3,2 3,CE/PB(12 分)4k 3k284,CE设直线 CE 交 x 轴于点 N,其函数表达式为yk2x8,解得2,344yx8的函数表达式为,令 y=0,得x80,x6,点 N 的坐标为33(6,0)(13 分)CN/PB,OPOBm832,(14 分),解得m OCON863832综上所述,当 m 的值为或时,OPQ是等腰三角形33解法二:当 x=0 时,y 12,点 E 的坐标为x 3x 8 8,点 C 的坐标为(0,8)2(3,4),OE 32 42 5,CE 32(84)2 5,OE=CE,1 2,设抛物线的对称轴
7、交直线 PB 于点 M,交 x 轴于点 H分两种情况:当QO QP时,OPQ是等腰三角形1 3,2 3,CE/PB(9 分)又HM/y 轴,四边形 PMEC 是平行四边形,EM CP 8 m,HM HE EM 4(8m)4mBH 83 5,HM/y 轴,BHMBOP,HMBH(10 分)OPBO32(11 分)34m5m8m 当OP OQ时,OPQ是等腰三角形 EH/y轴,OPQEMQ,EQEM,EQ EM(12 分)OQOPEM EQ OE OQ OE OP 5(m)5 m,HM 4(5 m),EH/y轴,BHMBOP,HMBH(13 分)OPBO1m5m88m (14 分)38当 m 的值
8、为或32时,OPQ是等腰三角形332如图所示,梯形 ABCD 中,AB DC,B=90,AD=15,AB=16,BC=12,点 E 是边AB 上的动点,点 F 是射线 CD 上一点,射线 ED 和射线 AF 交于点 G,且 AGE=DAB(1)求线段 CD 的长;(2)如果 AEC 是以 EG 为腰的等腰三角形,求线段AE 的长;(3)如果点 F 在边 CD 上(不与点 C、D 重合),设 AE=x,DF=y,求 y 关于 x 的函数解析式,并写出 x 的取值围解:(1)作 DHAB 于 H,如图 1,易得四边形 BCDH 为矩形,DH=BC=12,CD=BH,在 Rt ADH 中,AH=9,
9、BH=ABAH=169=7,CD=7;(2)当 EA=EG 时,则 AGE=GAE,AGE=DAB,GAE=DAB,G 点与 D 点重合,即 ED=EA,作 EMAD 于 M,如图 1,则 AM=AD=,MAE=HAD,Rt AME Rt AHD,AE:AD=AM:AH,即 AE:15=:9,解得 AE=;当 GA=GE 时,则 AGE=AEG,AGE=DAB,而 AGE=ADG+DAG,DAB=GAE+DAG,GAE=ADG,AEG=ADG,AE=AD=15,综上所述,AEC 是以 EG 为腰的等腰三角形时,线段AE 的长为或 15;(3)作 DHAB 于 H,如图 2,则 AH=9,HE=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 年中 数学试卷 分类 汇编 解析 动态 问题
限制150内