《数电实验锁相环倍频器.pdf》由会员分享,可在线阅读,更多相关《数电实验锁相环倍频器.pdf(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、.实验 11 锁相环倍频器121180166 琛一、实验目的一、实验目的1 学习数字锁相环集成电路,锁相环倍频器的基础知识。2 根据数字锁相环 74HC/HCT4046 的数据手册,分析、设计数字锁相环倍频器,学习根据集成电路数据手册分析、设计电路的的一般方法。二、实验器材二、实验器材双踪示波器、方波信号发生器、数字万用表、CD4046、74LS47。三、实验预习、研究、思考题三、实验预习、研究、思考题1 锁相环锁定与失锁的标志是什么?如何用示波器来判断?答:锁定的标志是输出信号和输入信号频率相同,仅有相位的不同。用示波器判断,可以调节输入电压,若输出信号与输入信号相位差不变化,频率一致,即两
2、信号相对稳定,则完成锁相。2 锁相环的锁定围主要由哪些因素决定?答:由CD4046 技术手册可知,期锁定围由R1、R2、C1 三个主要参数决定。具体值要看这三个参数的关系图。其中,C1、R1 决定中心频率,R2、C1 决定最低频率,R1、R2 决定最高频率和最低频率比值。3 CD4046 有两个相位比较器,有何区别?74HC4046 有 3 个相位比较器,有何区别?.答:对于 CD4046,两个相位比较器分别为异或相位比较器(NOR)即PC1,其相位锁定围为 0180;相位频率比较器(PFD),即PC2,其相位锁定围为-360360。其中PC1 比较容易锁定,但是要求输入信号 50%占空比,或
3、者是波形较好小信号。若条件达到尽可能用 PC1,否则使用 PC2 已达到稳定的锁相。一般多用 PC2,比较容易满足条件。对于 74HC4046,除去 CD4046 已有的两个触发器外,还有第三个触发器 JK 触发相位比较器(JK),即 PC3,其相位锁定围是 0360。选择方式与 CD4046 类似。4 试推导有一个零点的二阶系统的单位阶跃响应的时域表达式和超调量的表达式。as b,其中 a=2,2s as bas b1b=2,这是一个冲激响应。其对应阶跃响应为 G(s)=2*。s as bs答:对于有一个零点的二阶系统,其 H(s)=对其进行拉普拉斯逆变换可知,由于表达式过于复杂,故使用ma
4、tlab进行拉普拉斯逆变换可得,g(t)=1-(cosh(t*(a2/4-b)(1/2)-(a*sinh(t*(a2/4-b)(1/2)/(2*(a2/4-b)(1/2)/exp(a*t)/2).其超调量表达式为=y(tp)-y()y()。同样,使用 matlab,Tp=log(2*b)/(2*b+a*(a2-4*b)(1/2)-a2)/(a2/4-b)(1/2)(另一解为负数不符合实际舍去)再代入即可求解=y(tp)-y()y(tp)-1y()=1 y(tp)-1。但由于matlab 功能有限,带入无法求出精确数值解。其中,我们根据拉普拉斯变换性质,可知y()limit s 0sG(s)1。
5、5 电容 C2 应如何选取?C2 的不同取值,对实际电路的动态特性有何影响?答:C2 是低通滤波电路中的接地电阻。应该先由对系统的动态特性,即快速性和准确性,确定时间常数1、2,再求 R3、R4、C2 的参数。对于此低通滤波器,Kf(s)=2*s 1Vc=,其中1=R3C2,1 2)s 1Vd(n 2=R4C2。系 统 固 有 频 率12n*=KpKo,N(12)1 KpKo2/NnN(2),前者为系统固有频率,后者为122KpKo阻尼系数。快速性与准确性不可兼得,再由12KpKoNn2,22(-1n12)根据对于系统的需求选取参数,确定 C2。KpKo/N同时,为了使得系统有适当的阻抗,可以
6、让。.若其他条件一定,上升,则下降,快速性增大,准确度下降。若下降,则上升,下降,可知上升。则此时过渡时间增大,快速性下降,准确性升高。四、实验容与数据分析四、实验容与数据分析1 压控振荡器特性的测量。提供 VCO 输入端 05V 可变输入电压,测量不同电压下 VCO 输出端的输出频率。绘制 f曲线特性图。在本实验中,要求锁定频率为 10500KHz。经过试验,选取 R1=10K,R2=2M,C1=80pF,约为 10500KHz。电路图:其中 4 为输出端,5、8 接地,6、7 通过 C1 相连,11、12 通过 R1、R2 接地,16 接 Vcc。.数据图:(Y 轴单位:105Hz X 轴
7、单位:0.5V)分析:对于本实验来说的压控振荡器,f 与 v 在 1。5V4.5V 之间线性拟合较好,在 v4.5V 时虽然线性拟合度不高,但仍然是 f 随着 v 上升而上升,仍可认为处于锁相状态。其中频率下限误差在 9%,上线误差在 0.6%,上限拟合较好,而下限较差。如果将 C 改为 88F 左右时,也许下限会拟合较好。2 基本锁相环锁定与跟踪的观察。将锁相环接成基本的 闭环频率反馈系统。.将函数发生器 PULSE 输出的方波加到锁相环的输入端,当方波信号频率 f 等于 VCO 中心频率时,锁相环处于锁定状态,此时通过双踪示波器可以看到,输入信号 vi 与 VCO 的输出信号频率相等,二者
8、仅存在固定的相位差。当缓缓改变输入信号频率时,VCO 的输出频率也跟着改变,锁相环处于跟踪状态;当输入信号频率超过一定围时,VCO 波形稳定变为不稳定,锁相环进入失锁状态。电路图:其中 3、4 直接相连,5、8 接地,6、7 通过 C1 相连,11、12 通过 R1、R2 接地,9、13 分别通过 R3、C2、R4 进行滤波。原理图.波形图:锁定围:10500KHz取 f=250kHz、400KHz、490KHz 时的波形进行分析。其输入波形与输出波形t 分别为 400ns、440ns 和 440ns,而在我选取的示波器坐标下,40ns 为最小单位。可以认为这40ns 为误差。忽略这一误差值,
9、那么几种不同频率下t 值一样。事实上,这个差值为系统的传输延迟时间,一般应该保持不变。在本实验中,理论上锁相环应该上限能达到 500KHz,但是在实验中,当取 f=500KHz 时,示波器上无法出现稳定的锁相环图像,这说明此时已经失锁。所以才取 490KHz 时候的波形进行分析。同时,对于 10KHz 时候我也做了图,但是与后三组数据相比,此时示波器上.能显示出的最短时间为 1s,若认为其是此时输入输出信号相位差,则不够准确,且从数量级上与后三组一致,可认为此时 t 也是在440ns 左右。3 倍频电路设计并实现数字锁相环,实现输入频率10500HKHz,输出频率是输入频率的 1/4.电路图工作原理图.其中 3、4 之间接分频器,5、8 接地,6、7 通过 C1 相连,11、12 通过 R1、R2 接地,9、13 分别通过 R3、C2、R4 进行滤波。其中倍频器原理图与连线图.分频器采用 74LS74 的两个 D 触发器构成的两个二分频器级联构成四分频器。其中 3 为信号输入端,12 为信号输出端。锁定频率:f 从 2.27Hz125.6KHz波形图:数据分析:从数据可以看出,当系统处于稳定状态时,锁定围基本恰为原始锁定频率四分之一(9.1KHz503KHz),说明系统工作稳定。.
限制150内