二次函数题型分类复习总结(打印版)解析.pdf





《二次函数题型分类复习总结(打印版)解析.pdf》由会员分享,可在线阅读,更多相关《二次函数题型分类复习总结(打印版)解析.pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 4 二次函数考点分类复习 知识点一:二次函数的定义 考点:二次函数的二次项系数不为 0,且二次函数的表达式必须为整式。备注:当 b=c=0 时,二次函数 y=ax2 是最简单的二次函数 1、下列函数中,是二次函数的是 .y=x24x+1;y=2x2;y=2x2+4x;y=3x;y=2x1;y=mx2+nx+p;y=;y=5x。2、在一定条件下,若物体运动的路程 s(米)与时间 t(秒)的关系式为 s=5t2+2t,则 t4 秒时,该物体所经过的路程为 。3、若函数 y=(m2+2m7)x2+4x+5 是关于 x 的二次函数,则 m 的取值范围为 。课后练习:(1)下列函数中,二次函数的是()
2、Ay=ax2+bx+c B。2)1()2)(2(xxxy C。xxy12 D。y=x(x1)(2)如果函数1)3(232mxxmymm是二次函数,那么 m 的值为 知识点二:二次函数的对称轴、顶点、最值 1、二次函数 cbxaxy2,当0a时抛物线开口向上顶点为其最低点;当0a时抛物线开口向下顶点为其最高点 2、对于 y=ax2+bx+c 而言,其顶点坐标为(,)对于 y=a(xh)2+k 而言其顶点坐标为(,)。二次函数cbxaxy2用配方法或公式法(求h 时可用代入法)可化成:khxay2)(的形式,其中h=,k=练习:1抛物线 y=2x2+4x+m2m 经过坐标原点,则 m 的值为 。2
3、抛物 y=x2+bx+c 线的顶点坐标为(1,3),则 b ,c .3抛物线 yx23x 的顶点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限 4已知抛物线 yx2(m1)x14 的顶点的横坐标是 2,则 m 的值是_ .5若二次函数 y=3x2+mx3 的对称轴是直线 x1,则 m 。6当 n_,m_时,函数 y(mn)xn(mn)x 的图象是抛物线,且其顶点在原点,此抛物线的开口_.。7已知二次函数 y=x24x+m3 的最小值为 3,则 m 。知识点三:函数 y=ax2+bx+c 的图象和性质 1抛物线 y=x2+4x+9 的对称轴是 。2抛物线 y=2x212x+25 的
4、开口方向是 ,顶点坐标是 。3 试写出一个开口方向向上,对称轴为直线 x2,且与 y 轴的交点坐标为(0,3)的抛物线的解析式 。4 4通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)y=12 x22x+1;(2)y=3x2+8x2;(3)y=14 x2+x4 知识点四:函数 y=a(xh)2的图象与性质 1填表:抛物线 开口方向 对称轴 顶点坐标 223xy 2321xy 2已知函数 y=2x2,y=2(x4)2,和 y=2(x+1)2。(1)分别说出各个函数图象的开口方、对称轴和顶点坐标。(2)分析分别通过怎样的平移。可以由抛物线 y=2x2得到抛物线 y=2(x4)2和 y=2
5、(x+1)2?3试写出抛物线 y=3x2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。(1)右移 2 个单位;(2)左移23 个单位;(3)先左移 1 个单位,再右移 4 个单位。4试说明函数 y=12(x3)2 的图象特点及性质(开口、对称轴、顶点坐标、增减性、最值)。知识点五:二次函数的增减性 1.二次函数 y=3x26x+5,当 x1 时,y 随 x 的增大而 ;当 x 2 时,y 随 x 的增大而增大;当 x 2 时,y 随 x 的增大而减少;则 x1 时,y 的值为 。3.已知二次函数 y=x2(m+1)x+1,当 x1 时,y 随 x 的增大而增大,则 m 的取值范围是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 题型 分类 复习 总结 打印 解析

限制150内