第7章金融市场风险计量模型VaR(金融工程与风险管理课件.ppt
《第7章金融市场风险计量模型VaR(金融工程与风险管理课件.ppt》由会员分享,可在线阅读,更多相关《第7章金融市场风险计量模型VaR(金融工程与风险管理课件.ppt(110页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023/2/24第第7章金融市场风险计量章金融市场风险计量模型模型VaR(金融工程与风金融工程与风险管理险管理7.1 VaR的定义的定义nValue at Risk,译为风险价值或在险价值,译为风险价值或在险价值,以货币表示的风险,处在风险中的金融资以货币表示的风险,处在风险中的金融资产的货币量。产的货币量。n定义:定义:VaR是指在是指在某一给定的置信水平下某一给定的置信水平下,资产组合资产组合在未来特定的一段时间在未来特定的一段时间内可能遭内可能遭受的最大损失。受的最大损失。(Jorion,1997)VaR 是一种对是一种对可能实现的价值(市值)可能实现的价值(市值)损失的损失的估计,而
2、不是一种估计,而不是一种“账面账面”的损失估计。的损失估计。VaR:金融风险的:金融风险的“天气预报天气预报”n假设假设1个基金经理希望在接下来的个基金经理希望在接下来的10天时间天时间内存在内存在 95%概率其所管理的基金价值损失概率其所管理的基金价值损失不超过不超过$1,000,000。则我们可以将其写作:。则我们可以将其写作:nVaR回答的问题:我们有回答的问题:我们有 C的置信水平在接下来的置信水平在接下来的的 T 个交易日中损失程度不会超过的金额。个交易日中损失程度不会超过的金额。VaR:金融风险的:金融风险的“天气预报天气预报”n例如:例如:A银行银行2006年年4月月1日公布其持
3、有期为日公布其持有期为10天、置信水平为天、置信水平为99%的的VaR为为1000万元。万元。这意味着如下这意味着如下3种等价的描述:种等价的描述:1、A银行从银行从4月月1日开始,未来日开始,未来10天内资产组合天内资产组合的损失大于的损失大于1000万元的概率小于万元的概率小于1%;2、以、以99的概率确信:的概率确信:A银行从银行从4月月1日起未来日起未来10天内的损失不超过天内的损失不超过1000万元。万元。3、平均而言,、平均而言,A银行在未来的银行在未来的100天内有天内有1天损天损失可能超过失可能超过1000万元。(万元。(思考:一旦超过有多思考:一旦超过有多少损失呢?少损失呢?
4、)7.2 VaR的基本参数的基本参数n持有期:计算持有期:计算VaR的时间长度的时间长度资产组合的波动性(方差)与时间长度正相关,资产组合的波动性(方差)与时间长度正相关,故故VaR随着持有期增加而增加。随着持有期增加而增加。VaR隐含假设:资产组合在持有期内不发生变隐含假设:资产组合在持有期内不发生变化,若有变化则持有期要调整。化,若有变化则持有期要调整。新资本协议:计算监管资本的新资本协议:计算监管资本的VaR持有期持有期至少为至少为10个交易日,个交易日,JPMorgan等金融机构内等金融机构内部通常选择为部通常选择为1天。天。讨论:讨论:持有期的选择持有期的选择n资产流动性(资产流动性
5、(liquidity):事前确定):事前确定原则:按金融机构无法控制损失的时间期限原则:按金融机构无法控制损失的时间期限n一般企业的资产组合缺乏流动性,可能在若干日都一般企业的资产组合缺乏流动性,可能在若干日都无法改变头寸,则相应的持有期就要长,以使无法改变头寸,则相应的持有期就要长,以使VaR给出的风险能够覆盖多日的给出的风险能够覆盖多日的“考验考验”。n如果金融机构能够一天一次度量风险并且改变资产如果金融机构能够一天一次度量风险并且改变资产组合的构成,则其风险可以控制在组合的构成,则其风险可以控制在1天内,故可将持天内,故可将持有期定为有期定为1天。天。若头寸可以快速出清(若头寸可以快速出
6、清(liquidation)或变现,)或变现,则可以选择较短的持有期,反之亦反。则可以选择较短的持有期,反之亦反。讨论:讨论:持有期的选择持有期的选择n正态分布的要求正态分布的要求持有期越长,资产组合回报持有期越长,资产组合回报r的分布越偏离正态的分布越偏离正态分布,分布,VaR计算中最方便的假设是回报率服从正态分计算中最方便的假设是回报率服从正态分布,在较短的持有期下,基于正态分布的假设布,在较短的持有期下,基于正态分布的假设更为合理。更为合理。n头寸的调整头寸的调整持有期越长,风险管理者越可能改变头寸,则持有期越长,风险管理者越可能改变头寸,则时间越短越能保证资产组合所有资产头寸不变时间越
7、短越能保证资产组合所有资产头寸不变的假设。的假设。讨论:讨论:持有期的选择持有期的选择n数据约束数据约束从理论上讲,从理论上讲,VaR模型可以较为准确地计算任意持有期模型可以较为准确地计算任意持有期下资产组合的市场风险,但事实上,鉴于长期历史数下资产组合的市场风险,但事实上,鉴于长期历史数据收集的困难,往往设置较短的持有期。据收集的困难,往往设置较短的持有期。例如,若计算某资产的例如,若计算某资产的VaR需要需要1000个数据才能达到足个数据才能达到足够的精度,若计算该资产持有期为够的精度,若计算该资产持有期为1天的天的VaR,则需要,则需要4年(每年年(每年250个交易日)的数据,而如果持有
8、期为个交易日)的数据,而如果持有期为10天,天,就需要有就需要有40年的数据年的数据。长时期的历史数据在实际中可能无法获得,而且距离长时期的历史数据在实际中可能无法获得,而且距离当前时刻过于遥远的历史数据,由于市场情形的变化当前时刻过于遥远的历史数据,由于市场情形的变化可能使早期的数据对可能使早期的数据对VaR计算具有很大的干扰性。计算具有很大的干扰性。讨论:置信水平的选择讨论:置信水平的选择n后验测试后验测试置信水平越高,对于同样的资产组合、在给定的持有置信水平越高,对于同样的资产组合、在给定的持有期内,置信水平越高,则期内,置信水平越高,则VaR越大,即资产的损失大于越大,即资产的损失大于
9、VaR的可能性越小,可靠性越高!的可能性越小,可靠性越高!但是,为了验证但是,为了验证VaR所需要的数据越多,实际中可能受所需要的数据越多,实际中可能受到数据量的限制。到数据量的限制。n风险资本要求风险资本要求金融机构维持安全性的愿望和股东报酬率之间的权衡。金融机构维持安全性的愿望和股东报酬率之间的权衡。n监管要求监管要求监管当局为保持金融系统的稳定需要设置较高的置信监管当局为保持金融系统的稳定需要设置较高的置信水平,如新资本协议至少为水平,如新资本协议至少为99%。讨论:置信水平的选择讨论:置信水平的选择n统计和比较的需要统计和比较的需要不同的机构使用不同的置信水平报告不同的机构使用不同的置
10、信水平报告VaR数值,数值,需要知道其假设的分布和置信水平,若分布假需要知道其假设的分布和置信水平,若分布假设为正态分布,则可以相互转化,不影响不同设为正态分布,则可以相互转化,不影响不同机构之间的不同置信水平下的评价。机构之间的不同置信水平下的评价。但是,不同分布下的但是,不同分布下的VaR无法转化,如无法转化,如T分布。分布。qtdist(0.99,4)=3.7469473879792,qtdist(0.95,2)=2.91998558035372。讨论:置信水平的选择讨论:置信水平的选择n置信水平的目的:即可信度或可靠性,通常为置信水平的目的:即可信度或可靠性,通常为99%(BCBS)或
11、)或95(JP Morgan)。)。理由:银行业的脆弱性,防范小概率发生的极端风险,理由:银行业的脆弱性,防范小概率发生的极端风险,故要求计量的是资产组合的下方风险故要求计量的是资产组合的下方风险(Downside Risk)。虽然这种风险发生的概率只有虽然这种风险发生的概率只有5或者或者1,但危害性,但危害性大。大。n总结:总结:VaR的计算的是极端风险,而不是平均风的计算的是极端风险,而不是平均风险,这与险,这与传统的方差计量风险传统的方差计量风险有本质区别。有本质区别。7.3 VaR的数学定义的数学定义 n由由VaR的定义,若资产组合未来的随机损益为的定义,若资产组合未来的随机损益为=V
12、,则对应于置信水平为(一般为,则对应于置信水平为(一般为99或者或者95)的)的VaR满足如下等式满足如下等式由于约定俗成的惯例,一般将由于约定俗成的惯例,一般将VaR取为正值,故在(取为正值,故在(1.1)中)中的的VaR前面加负号。前面加负号。1999年,年,Artzner等给出严格的等给出严格的VaR数学数学定义式定义式(7.1)(7.2)7.3.1 连续情形连续情形n由由7.2,VaR就是对应于置信水平就是对应于置信水平c的损益分的损益分布的下分位数,由于其值为负,故在布的下分位数,由于其值为负,故在(7.2)等号右边加负号,这表明)等号右边加负号,这表明VaR计量计量的是资产组合的下
13、方风险(的是资产组合的下方风险(Downside Risk)。在连续的情形下)。在连续的情形下VaR满足满足和,分别表示资产组合随机损益的分别表示资产组合随机损益的PDF和和CDF上式是解析法计算上式是解析法计算VaR的基本依据。的基本依据。VaR收益收益损失损失1-CPr约定俗成:约定俗成:VaR是以正数表示。是以正数表示。7.3.2 离散情形离散情形n式(式(7.2)对)对VaR的定义既适用于损益序列的定义既适用于损益序列为连续型随机变量的情形,也适用于离散为连续型随机变量的情形,也适用于离散的损益分布。若资产组合的损益序列为离的损益分布。若资产组合的损益序列为离散型,则散型,则VaR满足
14、满足上式便成为历史模拟法和蒙特卡洛模拟法计算上式便成为历史模拟法和蒙特卡洛模拟法计算VaR的基本依据。的基本依据。7.4 VaR计算的基本原理计算的基本原理n不妨将不妨将A银行的全部资产看成银行的全部资产看成1个资产组合,期初个资产组合,期初(比如(比如2005.1.1)该组合的盯市价值为)该组合的盯市价值为V0,10天后天后其资产其资产 的价值如下图所示:的价值如下图所示:(VaR不是以账面价值,不是以账面价值,而是以市场价值计算来计算风险而是以市场价值计算来计算风险)回报率回报率r是随机变量是随机变量v0持有期持有期 T10天天vT=v0(1r)7.4 VaR计算的基本原理计算的基本原理n
15、如果在某个置信水平如果在某个置信水平C(比如(比如99)下,第)下,第T天资天资产组合的最低价值为产组合的最低价值为VT*,则,则由由VaR的定义:资产组合在未来一段时间内可能的定义:资产组合在未来一段时间内可能的最大损失,有两种损失定义的最大损失,有两种损失定义:若以绝对损失定义若以绝对损失定义VaR,则称为绝对,则称为绝对VaR。若以回报的均值为参照来定义损失,即相对损若以回报的均值为参照来定义损失,即相对损失,则称为相对失,则称为相对VaR。期初的价值已知期初的价值已知需要估计的未知量需要估计的未知量期初价值期初价值期末的价期末的价值(在某值(在某个置信水个置信水平下)平下)绝对绝对Va
16、R(Absolute VaR)相对相对VaR(Relative VaR)n如果资产组合的平均回报率为如果资产组合的平均回报率为,在某一置,在某一置信水平下,资产组合持有期末的最小回报率信水平下,资产组合持有期末的最小回报率为为r*,则,则示例:相对示例:相对VaR95置信水置信水平,最大损平,最大损失失2580万万平均收益为平均收益为800万万比较:相对比较:相对VaR与绝对与绝对VaR总结:总结:VaR的优点的优点1、精确性:借助于数学和统计学工具,、精确性:借助于数学和统计学工具,VaR以定量的方式给出资产组合下方风险以定量的方式给出资产组合下方风险(Downside Risk)的确切值。
17、)的确切值。2、综合性:、综合性:将风险来源不同、多样化的金融工具的风险纳将风险来源不同、多样化的金融工具的风险纳入到一个统一的计量框架,将整个机构的风险入到一个统一的计量框架,将整个机构的风险集成为一个数值。集成为一个数值。可实施集中式的风险管理系统,提高风险管理可实施集中式的风险管理系统,提高风险管理的效率。的效率。总结:总结:VaR的优点的优点3、通俗性:货币表示的风险,方便公众、银行、监管机构通俗性:货币表示的风险,方便公众、银行、监管机构之间的沟通,充当信息披露工具。之间的沟通,充当信息披露工具。起源:起源:JP Morgan的的CEO Weathstone要求每天的要求每天的4.1
18、5 报告只产生一个数字:计量不同交易工具,报告只产生一个数字:计量不同交易工具,不同部门综合后的风险。不同部门综合后的风险。截止到截止到1999年,年,BCBS监管下的监管下的71家银行中有家银行中有66家对公家对公众披露众披露VaR。n缺点:缺点:VaR并没有告诉我们在可能超过并没有告诉我们在可能超过VaR损失损失的时间内(如的时间内(如95置信度的置信度的5/100天中;或天中;或99的的1/100天中)的实际损失会是多少。天中)的实际损失会是多少。7.5 VaR计算方法的解析法计算方法的解析法n解析法,又称为方差解析法,又称为方差-协方差法、参数法。协方差法、参数法。借助统计学,利用历史
19、数据拟合回报率借助统计学,利用历史数据拟合回报率r的统计的统计分布。分布。常见的分布有:正态分布、对数正态分布、常见的分布有:正态分布、对数正态分布、t分分布、广义误差分布(布、广义误差分布(GED)等。)等。n由历史数据,可以得到回报率由历史数据,可以得到回报率r的均值、方的均值、方差、协方差等,即所谓的统计参数。差、协方差等,即所谓的统计参数。n由参数来估计回报率由参数来估计回报率r在某个置信水平下的在某个置信水平下的最小值。最小值。7.5.1 单资产正态分布单资产正态分布VaRn假定假定A银行期初的资产市值银行期初的资产市值v0=$100,000,000根据历根据历史资料,其资产史资料,
20、其资产10天回报率天回报率r服从正态分布,即服从正态分布,即这里我们也可以发现方差计量风险的缺点:虽然回报率方这里我们也可以发现方差计量风险的缺点:虽然回报率方差仅为差仅为4,但回报率可以低到,但回报率可以低到-46.5%。n若以绝对若以绝对VaR来计算来计算计算结果表明:在计算结果表明:在10天内,这家期初有天内,这家期初有1亿美元资产的银行,亿美元资产的银行,我们可以以我们可以以99概率确信:其绝对损失不大于概率确信:其绝对损失不大于4650万美元,或万美元,或者说绝对损失大于者说绝对损失大于4650万美元的可能性只有万美元的可能性只有1。7.5.1 单资产正态分布单资产正态分布VaR在持
21、有期在持有期0,1(单期)内该资产的回报为(单期)内该资产的回报为r则期末资产的随机价值为则期末资产的随机价值为定义该资产持有期为定义该资产持有期为1、置信水平为、置信水平为c的最低价值(资产的最低价值(资产价值的下价值的下c分位数)为分位数)为由正态分布的性质则有由正态分布的性质则有则根据则根据VaR的定义即可得到单期的的定义即可得到单期的AVaR为为下面下面计计算持有期算持有期为为T期的期的VaR,资产资产的回的回报报ri满满足足n以上计算的是绝对以上计算的是绝对VaR,若是相对,若是相对VaR,容,容易得到易得到n并且成立并且成立n这就是著名的这就是著名的“平方根法则平方根法则”(squ
22、are-root rule)算例算例n设某股票初始价格为设某股票初始价格为10元,若该股票的回报服从元,若该股票的回报服从正态分布,其日回报的标准差为正态分布,其日回报的标准差为5,则该股票持,则该股票持有期为有期为1年(年(250个交易日),个交易日),99置信水平下的置信水平下的每股每股RVaR为为平方根法则的模型风险平方根法则的模型风险n平方根法则:若持有期增加为原来的平方根法则:若持有期增加为原来的K倍,倍,则则RVaR值增大为原值的值增大为原值的K0.5倍。倍。n平方根法则成立的必要条件是:资产的回平方根法则成立的必要条件是:资产的回报是独立同分布的,报是独立同分布的,且全部头寸只能
23、在持且全部头寸只能在持有期末瞬间出清。有期末瞬间出清。n事实上,回报的波动很难满足上述的两个事实上,回报的波动很难满足上述的两个假设,故以平方根法则计算的假设,故以平方根法则计算的VaR存在模型存在模型风险。风险。平方根法则的模型风险平方根法则的模型风险n当资产的持有期从当资产的持有期从1天增加到天增加到T天时,若天时,若1天的风险天的风险价值为价值为VaR,则,则T天的风险价值为天的风险价值为 由此就会导致一个荒谬的结果:由此就会导致一个荒谬的结果:一个期初价值为一个期初价值为1元的资产,经过一个充分长的元的资产,经过一个充分长的T天后,天后,该资产的该资产的VaR将超过将超过1元。这意味着
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 金融市场 风险 计量 模型 VaR 金融 工程 管理 课件
限制150内