第七章二次型优秀PPT.ppt
《第七章二次型优秀PPT.ppt》由会员分享,可在线阅读,更多相关《第七章二次型优秀PPT.ppt(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第七章 二次型现在学习的是第1页,共23页1 1 二次型与合同变换二次型与合同变换 一一.二次型的定义和矩阵表示二次型的定义和矩阵表示 定义定义7.1 7.1 n个变量x1,x2,xn的二次齐次函数 (x1,x2,xn)=a11x12+a22x22+annxn2+2a12x1x2+2a13x1x3+2an-1,nxn-1xn.称为一个n元二次型,简称二次型.当系数aij均为实数时称为n元实二次型.以下仅讨论实二次型.把2aijxixj写成aijxixj+ajixjxi,其中aij=aji,则有(x1,x2,xn)=a11x12+a12x1x2+a1nx1xn+a21x2x1+a22x22+a2
2、nx2xn+an1xnx1+an2xnx2+annxn2现在学习的是第2页,共23页或写成矩阵乘法形式若记则有现在学习的是第3页,共23页 定义定义7.27.2 =x=xT TAxAx称为n元二次型的矩阵表示式,实对称矩阵A A称为二次型二次型的矩阵的矩阵,称为实对称矩阵实对称矩阵A A的二次型的二次型.矩阵A A的秩也称为二次型二次型的秩的秩.例如,二次型=2x2+3y2-z2+4xy-6xz 的矩阵为于是现在学习的是第4页,共23页反之,实对称矩阵 定义定义7.3 仅含平方项的二次型的二次型为=x12+2x22 x32+4x1x2+2x1x32x2x3 f=d1x12+d2x22+dnxn
3、2称为标准形.可见,标准形的矩阵为对角矩阵.若记x x=(x1,x2,xn)T,y y=(y1,y2,yn)T,C C=(cij)nn,则称:x x=CyCy,即现在学习的是第5页,共23页为从x1,x2,xn到y1,y2,yn的线性变换.其中cij为线性变换的系数,C称为线性变换的系数矩阵.当C C为可逆矩阵时,x x=CyCy称为可逆线性变换,这时y=Cy=C-1-1x x为x x=CyCy的逆变换,当C C为正交矩阵时,x=Cyx=Cy称为正交变换.对n元二次型=x=xT TAxAx作变换x x=CyCy,则有 =x xT TAx=Ax=(CyCy)T TA A(CyCy)=y yT(C
4、 CTACAC)y=yy=yTBy y即,成为y1,y2,yn的n元二次型,其矩阵为B=C CTAC.AC.现在学习的是第6页,共23页 定理定理7.17.1 线性变换下,二次型仍变为二次型.可逆线性变换下,二次型的秩不变.二二.方阵的合同变换方阵的合同变换 经可逆线性变换x=Cyx=Cy,f的矩阵A A变为B B=C CTACAC.定义定义7.47.4 设A A,B B为同阶方阵,如果存在可逆矩阵C,使得B B=C CTACAC,则称A A与B B是合同的,记为A AB.B.对方阵A A的运算C CTACAC,称为对A A的合同变换,并称C为把A A变为B B的合同变换矩阵.矩阵的合同关系具
5、有性质:()反身性:A AA A;()对称性:若A AB B,则B BA A;()传递性:若A AB B,B BC C,则A AC.C.实际上,R(B B)=R(C CT TACAC)R(A A),R(A A)=R(C CT T)-1-1BCBC-1-1)R(B B),所以R(A A)=R(B B).现在学习的是第7页,共23页 由于矩阵C C可逆,记C=P1P2Ps(P1,P2,Ps为初等方阵),则有:B B=PsTPs-1TP1TA AP1P2Ps.可见,若A A与B B是合同的,则A A可经过一系列初等行变换和完全相同的初等列变换变成矩阵B B.所以,若A A与B B合同,则A A与B
6、B等价,而且它们的秩相等.但是等价矩阵不一定是合同的.而且,合同矩阵不一定是相似的;相似矩阵也不一定是合同的.但正交相似的矩阵一定是合同的.进一步相似的实对称矩阵一定是合同的.现在学习的是第8页,共23页2 2 用正交变换化二次型为标准形用正交变换化二次型为标准形 若使n元二次型化为标准形:只要可逆线性变换x=Pyx=Py,满足=P P-1APAP.现在学习的是第9页,共23页 由于矩阵A是实对称矩阵,所以有:定理定理7.2 7.2 任意二次型=x xT TAxAx都可经正交变换x=Pyx=Py化为标准形=y yT T y y,其中 的对角线元素恰是A的特征值.可见,用正交变换化二次型为标准形
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第七章 二次型优秀PPT 第七 二次 优秀 PPT
限制150内