第八节-雅可比与高斯—塞德尔迭代法课件.ppt
《第八节-雅可比与高斯—塞德尔迭代法课件.ppt》由会员分享,可在线阅读,更多相关《第八节-雅可比与高斯—塞德尔迭代法课件.ppt(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数学学院 信息与计算科学系生成向量序列生成向量序列 x(k),若,若称为迭代格式(称为迭代格式(1)的迭代矩阵。)的迭代矩阵。则有则有x*=Bx*+f,即即x*为原方程组为原方程组Ax=b 的解,的解,B基本思想:基本思想:将方程组将方程组 Ax=b(|A|0)转化为与其转化为与其 等价的方程组等价的方程组 x=Bx+fx(k+1)=Bx(k)+f (k=0,1,2,)(1)取初始向量取初始向量 x(0)按下列迭代格式按下列迭代格式 第八节第八节 雅可比迭代法雅可比迭代法 与高斯与高斯塞德尔迭代法塞德尔迭代法数学学院 信息与计算科学系序列序列x(k)的收敛条件的收敛条件,收敛速度收敛速度,误差
2、估计等误差估计等。问题问题:如何构造迭代格式如何构造迭代格式,迭代法产生的迭代法产生的 向量向量设方程组设方程组一、雅可比迭代法一、雅可比迭代法数学学院 信息与计算科学系其中其中 aii 0(i=1,2,n)等等价价方方程程组组数学学院 信息与计算科学系建立迭代格式建立迭代格式数学学院 信息与计算科学系 称为称为雅可比雅可比(Jacobi)迭代法迭代法,又称简单迭代法又称简单迭代法。或缩写为或缩写为数学学院 信息与计算科学系记矩阵记矩阵 A=D-L-U,其中,其中数学学院 信息与计算科学系于是雅可比迭代法可写为于是雅可比迭代法可写为矩阵形式矩阵形式其其Jacobi迭代矩阵迭代矩阵为为 B1=B
3、J=D-1-1(L+U),即,即数学学院 信息与计算科学系例如例如已知线性方程组已知线性方程组 Ax=b 的矩阵为的矩阵为其其雅可比迭代矩阵雅可比迭代矩阵为为数学学院 信息与计算科学系在在 Jacobi 迭代中迭代中,计算计算xi(k+1)(2 i n)时)时,使用使用xj(k+1)代替代替xj(k)(1 j i-1),即即建建立立迭迭代代格格式式二、高斯二、高斯塞德尔迭代法塞德尔迭代法数学学院 信息与计算科学系或缩写为或缩写为称为称为高斯高斯塞德尔塞德尔(Gauss Seidel)迭代法迭代法。其其G-S迭代矩阵迭代矩阵为为B2=BG=(D-L)-1U于是高斯于是高斯塞德尔迭代法可写为塞德尔
4、迭代法可写为矩阵形式矩阵形式数学学院 信息与计算科学系例如例如已知线性方程组已知线性方程组 Ax=b 的矩阵为的矩阵为其其G-S迭代矩阵迭代矩阵为为数学学院 信息与计算科学系 例例1 用雅可比迭代法解方程组用雅可比迭代法解方程组解:解:Jacobi 迭代格式为迭代格式为精精确确解解是是数学学院 信息与计算科学系kx1(k)x2(k)x3(k)10.720.830.8420.9711.071.15111.0999931.1999931.299991121.0999981.1999981.299997 取取计算如下计算如下数学学院 信息与计算科学系 解:解:Gauss-Seidel迭代格式为迭代格
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八节 可比 塞德尔 迭代法 课件
限制150内